Here's how LINK.SPRINGER.COM makes money* and how much!

*Please read our disclaimer before using our estimates.
Loading...

LINK . SPRINGER . COM {}

  1. Analyzed Page
  2. Matching Content Categories
  3. CMS
  4. Monthly Traffic Estimate
  5. How Does Link.springer.com Make Money
  6. Keywords
  7. Topics
  8. Questions
  9. Schema
  10. External Links
  11. Analytics And Tracking
  12. Libraries

We are analyzing https://link.springer.com/article/10.1186/s13059-016-0970-8.

Title:
Fast and accurate single-cell RNA-seq analysis by clustering of transcript-compatibility counts | Genome Biology
Description:
Current approaches to single-cell transcriptomic analysis are computationally intensive and require assay-specific modeling, which limits their scope and generality. We propose a novel method that compares and clusters cells based on their transcript-compatibility read counts rather than on the transcript or gene quantifications used in standard analysis pipelines. In the reanalysis of two landmark yet disparate single-cell RNA-seq datasets, we show that our method is up to two orders of magnitude faster than previous approaches, provides accurate and in some cases improved results, and is directly applicable to data from a wide variety of assays.
Website Age:
28 years and 1 months (reg. 1997-05-29).

Matching Content Categories {πŸ“š}

  • Education
  • Science
  • Telecommunications

Content Management System {πŸ“}

What CMS is link.springer.com built with?

Custom-built

No common CMS systems were detected on Link.springer.com, and no known web development framework was identified.

Traffic Estimate {πŸ“ˆ}

What is the average monthly size of link.springer.com audience?

🌠 Phenomenal Traffic: 5M - 10M visitors per month


Based on our best estimate, this website will receive around 5,000,019 visitors per month in the current month.
However, some sources were not loaded, we suggest to reload the page to get complete results.

check SE Ranking
check Ahrefs
check Similarweb
check Ubersuggest
check Semrush

How Does Link.springer.com Make Money? {πŸ’Έ}

We can't figure out the monetization strategy.

The purpose of some websites isn't monetary gain; they're meant to inform, educate, or foster collaboration. Everyone has unique reasons for building websites. This could be an example. Link.springer.com could be secretly minting cash, but we can't detect the process.

Keywords {πŸ”}

cells, transcriptcompatibility, cell, counts, clustering, expression, singlecell, reads, article, google, scholar, method, rnaseq, pubmed, gene, data, clusters, based, analysis, dataset, cluster, cas, obtained, figure, quantification, methods, transcripts, results, scrnaseq, read, fig, information, transcript, equivalence, additional, kallisto, file, oligo, tcc, types, propagation, affinity, set, differentiating, distance, nat, genome, model, genes, classes,

Topics {βœ’οΈ}

single-cell rna-seq reveals single-cell rna-seq experiment quantitative single-cell rna-seq single-cell sequencing-based technologies single-cell-genetic-analysis-product high-dimensional single-cell analysis single-cell rna-seq technology single-cell rna-seq assays single-cell transcriptomics applied single-cell rna-seq single-cell transcriptional landscape highly multiplex rna-seq bulk rna-seq data standard rna-seq model full-length mrna-seq gene expression profile minimum spanning tree assay-specific read-generating model high-dimensional cytometry data single-cell transcriptomic analysis genetic gene-expression heterogeneity mapping rna-seq reads single-cell transcriptomics transcript-compatibility based t-sne spliced-alignment option enabled single-cell data easier quantify rna-seq data van der maaten full size image transcript-compatibility counts matrix pooling single-cell tccs affinity propagation algorithm kallisto rna-seq program bulk rna-seq transcript/gene abundance estimation data-driven phenotypic dissection scrna-seq expression matrices analyzing scrna-seq data transcript-compatibility counts refines transcript-compatibility counts intuitively specific scrna-seq assay clustering single-cell data expected myelin-related genes obtaining transcript-compatability counts multiple single-cell assays microarray data pairwise jensen-shannon distances underlying read-generating model refining transcript-compatibility counting transcript-compatibility counts based

Questions {❓}

  • What is a gene, post-ENCODE?

Schema {πŸ—ΊοΈ}

WebPage:
      mainEntity:
         headline:Fast and accurate single-cell RNA-seq analysis by clustering of transcript-compatibility counts
         description:Current approaches to single-cell transcriptomic analysis are computationally intensive and require assay-specific modeling, which limits their scope and generality. We propose a novel method that compares and clusters cells based on their transcript-compatibility read counts rather than on the transcript or gene quantifications used in standard analysis pipelines. In the reanalysis of two landmark yet disparate single-cell RNA-seq datasets, we show that our method is up to two orders of magnitude faster than previous approaches, provides accurate and in some cases improved results, and is directly applicable to data from a wide variety of assays.
         datePublished:2016-05-26T00:00:00Z
         dateModified:2016-05-26T00:00:00Z
         pageStart:1
         pageEnd:14
         license:http://creativecommons.org/publicdomain/zero/1.0/
         sameAs:https://doi.org/10.1186/s13059-016-0970-8
         keywords:
            Minimum Span Tree
            Affinity Propagation
            Read Alignment
            Affinity Propagation Algorithm
            Pairwise Distance Matrix
            Animal Genetics and Genomics
            Human Genetics
            Plant Genetics and Genomics
            Microbial Genetics and Genomics
            Bioinformatics
            Evolutionary Biology
         image:
            https://media.springernature.com/lw1200/springer-static/image/art%3A10.1186%2Fs13059-016-0970-8/MediaObjects/13059_2016_970_Fig1_HTML.gif
            https://media.springernature.com/lw1200/springer-static/image/art%3A10.1186%2Fs13059-016-0970-8/MediaObjects/13059_2016_970_Fig2_HTML.gif
            https://media.springernature.com/lw1200/springer-static/image/art%3A10.1186%2Fs13059-016-0970-8/MediaObjects/13059_2016_970_Fig3_HTML.gif
            https://media.springernature.com/lw1200/springer-static/image/art%3A10.1186%2Fs13059-016-0970-8/MediaObjects/13059_2016_970_Fig4_HTML.gif
            https://media.springernature.com/lw1200/springer-static/image/art%3A10.1186%2Fs13059-016-0970-8/MediaObjects/13059_2016_970_Fig5_HTML.gif
            https://media.springernature.com/lw1200/springer-static/image/art%3A10.1186%2Fs13059-016-0970-8/MediaObjects/13059_2016_970_Fig6_HTML.gif
            https://media.springernature.com/lw1200/springer-static/image/art%3A10.1186%2Fs13059-016-0970-8/MediaObjects/13059_2016_970_Fig7_HTML.gif
            https://media.springernature.com/lw1200/springer-static/image/art%3A10.1186%2Fs13059-016-0970-8/MediaObjects/13059_2016_970_Fig8_HTML.gif
         isPartOf:
            name:Genome Biology
            issn:
               1474-760X
            volumeNumber:17
            type:
               Periodical
               PublicationVolume
         publisher:
            name:BioMed Central
            logo:
               url:https://www.springernature.com/app-sn/public/images/logo-springernature.png
               type:ImageObject
            type:Organization
         author:
               name:Vasilis Ntranos
               affiliation:
                     name:University of California
                     address:
                        name:Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, USA
                        type:PostalAddress
                     type:Organization
               type:Person
               name:Govinda M. Kamath
               affiliation:
                     name:Stanford University
                     address:
                        name:Department of Electrical Engineering, Stanford University, Stanford, USA
                        type:PostalAddress
                     type:Organization
               type:Person
               name:Jesse M. Zhang
               affiliation:
                     name:Stanford University
                     address:
                        name:Department of Electrical Engineering, Stanford University, Stanford, USA
                        type:PostalAddress
                     type:Organization
               type:Person
               name:Lior Pachter
               affiliation:
                     name:University of California
                     address:
                        name:Departments of Mathematics and Molecular and Cell Biology, University of California, Berkeley, USA
                        type:PostalAddress
                     type:Organization
               email:[email protected]
               type:Person
               name:David N. Tse
               affiliation:
                     name:Stanford University
                     address:
                        name:Department of Electrical Engineering, Stanford University, Stanford, USA
                        type:PostalAddress
                     type:Organization
                     name:University of California
                     address:
                        name:Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, USA
                        type:PostalAddress
                     type:Organization
               email:[email protected]
               type:Person
         isAccessibleForFree:1
         type:ScholarlyArticle
      context:https://schema.org
ScholarlyArticle:
      headline:Fast and accurate single-cell RNA-seq analysis by clustering of transcript-compatibility counts
      description:Current approaches to single-cell transcriptomic analysis are computationally intensive and require assay-specific modeling, which limits their scope and generality. We propose a novel method that compares and clusters cells based on their transcript-compatibility read counts rather than on the transcript or gene quantifications used in standard analysis pipelines. In the reanalysis of two landmark yet disparate single-cell RNA-seq datasets, we show that our method is up to two orders of magnitude faster than previous approaches, provides accurate and in some cases improved results, and is directly applicable to data from a wide variety of assays.
      datePublished:2016-05-26T00:00:00Z
      dateModified:2016-05-26T00:00:00Z
      pageStart:1
      pageEnd:14
      license:http://creativecommons.org/publicdomain/zero/1.0/
      sameAs:https://doi.org/10.1186/s13059-016-0970-8
      keywords:
         Minimum Span Tree
         Affinity Propagation
         Read Alignment
         Affinity Propagation Algorithm
         Pairwise Distance Matrix
         Animal Genetics and Genomics
         Human Genetics
         Plant Genetics and Genomics
         Microbial Genetics and Genomics
         Bioinformatics
         Evolutionary Biology
      image:
         https://media.springernature.com/lw1200/springer-static/image/art%3A10.1186%2Fs13059-016-0970-8/MediaObjects/13059_2016_970_Fig1_HTML.gif
         https://media.springernature.com/lw1200/springer-static/image/art%3A10.1186%2Fs13059-016-0970-8/MediaObjects/13059_2016_970_Fig2_HTML.gif
         https://media.springernature.com/lw1200/springer-static/image/art%3A10.1186%2Fs13059-016-0970-8/MediaObjects/13059_2016_970_Fig3_HTML.gif
         https://media.springernature.com/lw1200/springer-static/image/art%3A10.1186%2Fs13059-016-0970-8/MediaObjects/13059_2016_970_Fig4_HTML.gif
         https://media.springernature.com/lw1200/springer-static/image/art%3A10.1186%2Fs13059-016-0970-8/MediaObjects/13059_2016_970_Fig5_HTML.gif
         https://media.springernature.com/lw1200/springer-static/image/art%3A10.1186%2Fs13059-016-0970-8/MediaObjects/13059_2016_970_Fig6_HTML.gif
         https://media.springernature.com/lw1200/springer-static/image/art%3A10.1186%2Fs13059-016-0970-8/MediaObjects/13059_2016_970_Fig7_HTML.gif
         https://media.springernature.com/lw1200/springer-static/image/art%3A10.1186%2Fs13059-016-0970-8/MediaObjects/13059_2016_970_Fig8_HTML.gif
      isPartOf:
         name:Genome Biology
         issn:
            1474-760X
         volumeNumber:17
         type:
            Periodical
            PublicationVolume
      publisher:
         name:BioMed Central
         logo:
            url:https://www.springernature.com/app-sn/public/images/logo-springernature.png
            type:ImageObject
         type:Organization
      author:
            name:Vasilis Ntranos
            affiliation:
                  name:University of California
                  address:
                     name:Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, USA
                     type:PostalAddress
                  type:Organization
            type:Person
            name:Govinda M. Kamath
            affiliation:
                  name:Stanford University
                  address:
                     name:Department of Electrical Engineering, Stanford University, Stanford, USA
                     type:PostalAddress
                  type:Organization
            type:Person
            name:Jesse M. Zhang
            affiliation:
                  name:Stanford University
                  address:
                     name:Department of Electrical Engineering, Stanford University, Stanford, USA
                     type:PostalAddress
                  type:Organization
            type:Person
            name:Lior Pachter
            affiliation:
                  name:University of California
                  address:
                     name:Departments of Mathematics and Molecular and Cell Biology, University of California, Berkeley, USA
                     type:PostalAddress
                  type:Organization
            email:[email protected]
            type:Person
            name:David N. Tse
            affiliation:
                  name:Stanford University
                  address:
                     name:Department of Electrical Engineering, Stanford University, Stanford, USA
                     type:PostalAddress
                  type:Organization
                  name:University of California
                  address:
                     name:Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, USA
                     type:PostalAddress
                  type:Organization
            email:[email protected]
            type:Person
      isAccessibleForFree:1
["Periodical","PublicationVolume"]:
      name:Genome Biology
      issn:
         1474-760X
      volumeNumber:17
Organization:
      name:BioMed Central
      logo:
         url:https://www.springernature.com/app-sn/public/images/logo-springernature.png
         type:ImageObject
      name:University of California
      address:
         name:Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, USA
         type:PostalAddress
      name:Stanford University
      address:
         name:Department of Electrical Engineering, Stanford University, Stanford, USA
         type:PostalAddress
      name:Stanford University
      address:
         name:Department of Electrical Engineering, Stanford University, Stanford, USA
         type:PostalAddress
      name:University of California
      address:
         name:Departments of Mathematics and Molecular and Cell Biology, University of California, Berkeley, USA
         type:PostalAddress
      name:Stanford University
      address:
         name:Department of Electrical Engineering, Stanford University, Stanford, USA
         type:PostalAddress
      name:University of California
      address:
         name:Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, USA
         type:PostalAddress
ImageObject:
      url:https://www.springernature.com/app-sn/public/images/logo-springernature.png
Person:
      name:Vasilis Ntranos
      affiliation:
            name:University of California
            address:
               name:Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, USA
               type:PostalAddress
            type:Organization
      name:Govinda M. Kamath
      affiliation:
            name:Stanford University
            address:
               name:Department of Electrical Engineering, Stanford University, Stanford, USA
               type:PostalAddress
            type:Organization
      name:Jesse M. Zhang
      affiliation:
            name:Stanford University
            address:
               name:Department of Electrical Engineering, Stanford University, Stanford, USA
               type:PostalAddress
            type:Organization
      name:Lior Pachter
      affiliation:
            name:University of California
            address:
               name:Departments of Mathematics and Molecular and Cell Biology, University of California, Berkeley, USA
               type:PostalAddress
            type:Organization
      email:[email protected]
      name:David N. Tse
      affiliation:
            name:Stanford University
            address:
               name:Department of Electrical Engineering, Stanford University, Stanford, USA
               type:PostalAddress
            type:Organization
            name:University of California
            address:
               name:Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, USA
               type:PostalAddress
            type:Organization
      email:[email protected]
PostalAddress:
      name:Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, USA
      name:Department of Electrical Engineering, Stanford University, Stanford, USA
      name:Department of Electrical Engineering, Stanford University, Stanford, USA
      name:Departments of Mathematics and Molecular and Cell Biology, University of California, Berkeley, USA
      name:Department of Electrical Engineering, Stanford University, Stanford, USA
      name:Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, USA

External Links {πŸ”—}(194)

Analytics and Tracking {πŸ“Š}

  • Google Tag Manager

Libraries {πŸ“š}

  • Clipboard.js
  • Prism.js

5.16s.