Here's how NATURE.COM makes money* and how much!

*Please read our disclaimer before using our estimates.
Loading...

NATURE . COM {}

  1. Analyzed Page
  2. Matching Content Categories
  3. CMS
  4. Monthly Traffic Estimate
  5. How Does Nature.com Make Money
  6. How Much Does Nature.com Make
  7. Keywords
  8. Topics
  9. Questions
  10. Schema
  11. Social Networks
  12. External Links
  13. Analytics And Tracking
  14. Libraries
  15. Hosting Providers
  16. CDN Services

We are analyzing https://www.nature.com/articles/nsmb.2466.

Title:
Evolutionary conservation of codon optimality reveals hidden signatures of cotranslational folding | Nature Structural & Molecular Biology
Description:
Rare or nonoptimal codons that cause ribosomes to pause have been suggested to be important determinants of cotranslational folding. A revised translational efficiency scale, which considers tRNA abundance as well as codon usage and codon-tRNA interaction, now suggests a correlation between optimal or nonoptimal codon usage and secondary structure of the nascent polypeptide. The choice of codons can influence local translation kinetics during protein synthesis. Whether codon preference is linked to cotranslational regulation of polypeptide folding remains unclear. Here, we derive a revised translational efficiency scale that incorporates the competition between tRNA supply and demand. Applying this scale to ten closely related yeast species, we uncover the evolutionary conservation of codon optimality in eukaryotes. This analysis reveals universal patterns of conserved optimal and nonoptimal codons, often in clusters, which associate with the secondary structure of the translated polypeptides independent of the levels of expression. Our analysis suggests an evolved function for codon optimality in regulating the rhythm of elongation to facilitate cotranslational polypeptide folding, beyond its previously proposed role of adapting to the cost of expression. These findings establish how mRNA sequences are generally under selection to optimize the cotranslational folding of corresponding polypeptides.
Website Age:
30 years and 10 months (reg. 1994-08-11).

Matching Content Categories {๐Ÿ“š}

  • Education
  • Science
  • Animals & Wildlife

Content Management System {๐Ÿ“}

What CMS is nature.com built with?

Custom-built

No common CMS systems were detected on Nature.com, and no known web development framework was identified.

Traffic Estimate {๐Ÿ“ˆ}

What is the average monthly size of nature.com audience?

๐ŸŒ  Phenomenal Traffic: 5M - 10M visitors per month


Based on our best estimate, this website will receive around 5,000,019 visitors per month in the current month.
However, some sources were not loaded, we suggest to reload the page to get complete results.

check SE Ranking
check Ahrefs
check Similarweb
check Ubersuggest
check Semrush

How Does Nature.com Make Money? {๐Ÿ’ธ}


Display Ads {๐ŸŽฏ}


The website utilizes display ads within its content to generate revenue. Check the next section for further revenue estimates.

Ads are managed by yourbow.com. Particular relationships are as follows:

Direct Advertisers (10)
google.com, pmc.com, doceree.com, yourbow.com, audienciad.com, onlinemediasolutions.com, advibe.media, aps.amazon.com, getmediamx.com, onomagic.com

Reseller Advertisers (38)
conversantmedia.com, rubiconproject.com, pubmatic.com, appnexus.com, openx.com, smartadserver.com, lijit.com, sharethrough.com, video.unrulymedia.com, google.com, yahoo.com, triplelift.com, onetag.com, sonobi.com, contextweb.com, 33across.com, indexexchange.com, media.net, themediagrid.com, adform.com, richaudience.com, sovrn.com, improvedigital.com, freewheel.tv, smaato.com, yieldmo.com, amxrtb.com, adyoulike.com, adpone.com, criteo.com, smilewanted.com, 152media.info, e-planning.net, smartyads.com, loopme.com, opera.com, mediafuse.com, betweendigital.com

How Much Does Nature.com Make? {๐Ÿ’ฐ}


Display Ads {๐ŸŽฏ}

$63,100 per month
Our calculations suggest that Nature.com earns between $42,042 and $115,616 monthly online from display advertisements.

Keywords {๐Ÿ”}

article, google, scholar, cas, nature, protein, codon, folding, biol, access, mol, cotranslational, translation, ribosome, cell, translational, struct, content, usage, sci, nat, res, usa, cookies, data, frydman, efficiency, structure, gene, nucleic, acids, privacy, analysis, molecular, biology, evolutionary, optimality, open, synonymous, proteins, tunnel, proc, natl, acad, information, structural, pechmann, judith, codons, local,

Topics {โœ’๏ธ}

nature portfolio permissions reprints designed research privacy policy advertising nature 475 nature 449 nature social media author information authors position-specific gap penalties position-specific scoring matrices pathogenic exon-skipping variants coding sequenceโ€“dependent degradation author correspondence mistranslation-induced protein misfolding springerlink instant access ribosome-mediated translational pause personal data permissions protein domain organization data protection article pechmann judith frydman gratefully acknowledge support translational protein folding privacy european economic area genome-wide analysis synonymous codon usage pdb related databases data competing financial interests codon usage preferences nascent polypeptide folding unwind messenger rna coding-sequence evolution translational folding intermediates translational folding pathway explore content subscription content molecular bases ribosome exit port ribosomal exit tunnel transfer rna genes ribosome exit tunnel issue learn institutional subscriptions read ฮฒ-sheet signals structurally sensitive sites

Questions {โ“}

  • What is the time scale for ฮฑ-helix nucleation?

Schema {๐Ÿ—บ๏ธ}

WebPage:
      mainEntity:
         headline:Evolutionary conservation of codon optimality reveals hidden signatures of cotranslational folding
         description:Rare or nonoptimal codons that cause ribosomes to pause have been suggested to be important determinants of cotranslational folding. A revised translational efficiency scale, which considers tRNA abundance as well as codon usage and codon-tRNA interaction, now suggests a correlation between optimal or nonoptimal codon usage and secondary structure of the nascent polypeptide. The choice of codons can influence local translation kinetics during protein synthesis. Whether codon preference is linked to cotranslational regulation of polypeptide folding remains unclear. Here, we derive a revised translational efficiency scale that incorporates the competition between tRNA supply and demand. Applying this scale to ten closely related yeast species, we uncover the evolutionary conservation of codon optimality in eukaryotes. This analysis reveals universal patterns of conserved optimal and nonoptimal codons, often in clusters, which associate with the secondary structure of the translated polypeptides independent of the levels of expression. Our analysis suggests an evolved function for codon optimality in regulating the rhythm of elongation to facilitate cotranslational polypeptide folding, beyond its previously proposed role of adapting to the cost of expression. These findings establish how mRNA sequences are generally under selection to optimize the cotranslational folding of corresponding polypeptides.
         datePublished:2012-12-23T00:00:00Z
         dateModified:2012-12-23T00:00:00Z
         pageStart:237
         pageEnd:243
         sameAs:https://doi.org/10.1038/nsmb.2466
         keywords:
            Protein folding
            Translation
            Life Sciences
            general
            Biochemistry
            Protein Structure
            Membrane Biology
            Biological Microscopy
         image:
            https://media.springernature.com/lw1200/springer-static/image/art%3A10.1038%2Fnsmb.2466/MediaObjects/41594_2013_Article_BFnsmb2466_Fig1_HTML.jpg
            https://media.springernature.com/lw1200/springer-static/image/art%3A10.1038%2Fnsmb.2466/MediaObjects/41594_2013_Article_BFnsmb2466_Fig2_HTML.jpg
            https://media.springernature.com/lw1200/springer-static/image/art%3A10.1038%2Fnsmb.2466/MediaObjects/41594_2013_Article_BFnsmb2466_Fig3_HTML.jpg
            https://media.springernature.com/lw1200/springer-static/image/art%3A10.1038%2Fnsmb.2466/MediaObjects/41594_2013_Article_BFnsmb2466_Fig4_HTML.jpg
            https://media.springernature.com/lw1200/springer-static/image/art%3A10.1038%2Fnsmb.2466/MediaObjects/41594_2013_Article_BFnsmb2466_Fig5_HTML.jpg
            https://media.springernature.com/lw1200/springer-static/image/art%3A10.1038%2Fnsmb.2466/MediaObjects/41594_2013_Article_BFnsmb2466_Fig6_HTML.jpg
         isPartOf:
            name:Nature Structural & Molecular Biology
            issn:
               1545-9985
               1545-9993
            volumeNumber:20
            type:
               Periodical
               PublicationVolume
         publisher:
            name:Nature Publishing Group US
            logo:
               url:https://www.springernature.com/app-sn/public/images/logo-springernature.png
               type:ImageObject
            type:Organization
         author:
               name:Sebastian Pechmann
               affiliation:
                     name:Stanford University
                     address:
                        name:Department of Biology, Stanford University, Stanford, USA
                        type:PostalAddress
                     type:Organization
                     name:BioX Program, Stanford University
                     address:
                        name:BioX Program, Stanford University, Stanford, USA
                        type:PostalAddress
                     type:Organization
               type:Person
               name:Judith Frydman
               affiliation:
                     name:Stanford University
                     address:
                        name:Department of Biology, Stanford University, Stanford, USA
                        type:PostalAddress
                     type:Organization
                     name:BioX Program, Stanford University
                     address:
                        name:BioX Program, Stanford University, Stanford, USA
                        type:PostalAddress
                     type:Organization
               email:[email protected]
               type:Person
         isAccessibleForFree:
         hasPart:
            isAccessibleForFree:
            cssSelector:.main-content
            type:WebPageElement
         type:ScholarlyArticle
      context:https://schema.org
ScholarlyArticle:
      headline:Evolutionary conservation of codon optimality reveals hidden signatures of cotranslational folding
      description:Rare or nonoptimal codons that cause ribosomes to pause have been suggested to be important determinants of cotranslational folding. A revised translational efficiency scale, which considers tRNA abundance as well as codon usage and codon-tRNA interaction, now suggests a correlation between optimal or nonoptimal codon usage and secondary structure of the nascent polypeptide. The choice of codons can influence local translation kinetics during protein synthesis. Whether codon preference is linked to cotranslational regulation of polypeptide folding remains unclear. Here, we derive a revised translational efficiency scale that incorporates the competition between tRNA supply and demand. Applying this scale to ten closely related yeast species, we uncover the evolutionary conservation of codon optimality in eukaryotes. This analysis reveals universal patterns of conserved optimal and nonoptimal codons, often in clusters, which associate with the secondary structure of the translated polypeptides independent of the levels of expression. Our analysis suggests an evolved function for codon optimality in regulating the rhythm of elongation to facilitate cotranslational polypeptide folding, beyond its previously proposed role of adapting to the cost of expression. These findings establish how mRNA sequences are generally under selection to optimize the cotranslational folding of corresponding polypeptides.
      datePublished:2012-12-23T00:00:00Z
      dateModified:2012-12-23T00:00:00Z
      pageStart:237
      pageEnd:243
      sameAs:https://doi.org/10.1038/nsmb.2466
      keywords:
         Protein folding
         Translation
         Life Sciences
         general
         Biochemistry
         Protein Structure
         Membrane Biology
         Biological Microscopy
      image:
         https://media.springernature.com/lw1200/springer-static/image/art%3A10.1038%2Fnsmb.2466/MediaObjects/41594_2013_Article_BFnsmb2466_Fig1_HTML.jpg
         https://media.springernature.com/lw1200/springer-static/image/art%3A10.1038%2Fnsmb.2466/MediaObjects/41594_2013_Article_BFnsmb2466_Fig2_HTML.jpg
         https://media.springernature.com/lw1200/springer-static/image/art%3A10.1038%2Fnsmb.2466/MediaObjects/41594_2013_Article_BFnsmb2466_Fig3_HTML.jpg
         https://media.springernature.com/lw1200/springer-static/image/art%3A10.1038%2Fnsmb.2466/MediaObjects/41594_2013_Article_BFnsmb2466_Fig4_HTML.jpg
         https://media.springernature.com/lw1200/springer-static/image/art%3A10.1038%2Fnsmb.2466/MediaObjects/41594_2013_Article_BFnsmb2466_Fig5_HTML.jpg
         https://media.springernature.com/lw1200/springer-static/image/art%3A10.1038%2Fnsmb.2466/MediaObjects/41594_2013_Article_BFnsmb2466_Fig6_HTML.jpg
      isPartOf:
         name:Nature Structural & Molecular Biology
         issn:
            1545-9985
            1545-9993
         volumeNumber:20
         type:
            Periodical
            PublicationVolume
      publisher:
         name:Nature Publishing Group US
         logo:
            url:https://www.springernature.com/app-sn/public/images/logo-springernature.png
            type:ImageObject
         type:Organization
      author:
            name:Sebastian Pechmann
            affiliation:
                  name:Stanford University
                  address:
                     name:Department of Biology, Stanford University, Stanford, USA
                     type:PostalAddress
                  type:Organization
                  name:BioX Program, Stanford University
                  address:
                     name:BioX Program, Stanford University, Stanford, USA
                     type:PostalAddress
                  type:Organization
            type:Person
            name:Judith Frydman
            affiliation:
                  name:Stanford University
                  address:
                     name:Department of Biology, Stanford University, Stanford, USA
                     type:PostalAddress
                  type:Organization
                  name:BioX Program, Stanford University
                  address:
                     name:BioX Program, Stanford University, Stanford, USA
                     type:PostalAddress
                  type:Organization
            email:[email protected]
            type:Person
      isAccessibleForFree:
      hasPart:
         isAccessibleForFree:
         cssSelector:.main-content
         type:WebPageElement
["Periodical","PublicationVolume"]:
      name:Nature Structural & Molecular Biology
      issn:
         1545-9985
         1545-9993
      volumeNumber:20
Organization:
      name:Nature Publishing Group US
      logo:
         url:https://www.springernature.com/app-sn/public/images/logo-springernature.png
         type:ImageObject
      name:Stanford University
      address:
         name:Department of Biology, Stanford University, Stanford, USA
         type:PostalAddress
      name:BioX Program, Stanford University
      address:
         name:BioX Program, Stanford University, Stanford, USA
         type:PostalAddress
      name:Stanford University
      address:
         name:Department of Biology, Stanford University, Stanford, USA
         type:PostalAddress
      name:BioX Program, Stanford University
      address:
         name:BioX Program, Stanford University, Stanford, USA
         type:PostalAddress
ImageObject:
      url:https://www.springernature.com/app-sn/public/images/logo-springernature.png
Person:
      name:Sebastian Pechmann
      affiliation:
            name:Stanford University
            address:
               name:Department of Biology, Stanford University, Stanford, USA
               type:PostalAddress
            type:Organization
            name:BioX Program, Stanford University
            address:
               name:BioX Program, Stanford University, Stanford, USA
               type:PostalAddress
            type:Organization
      name:Judith Frydman
      affiliation:
            name:Stanford University
            address:
               name:Department of Biology, Stanford University, Stanford, USA
               type:PostalAddress
            type:Organization
            name:BioX Program, Stanford University
            address:
               name:BioX Program, Stanford University, Stanford, USA
               type:PostalAddress
            type:Organization
      email:[email protected]
PostalAddress:
      name:Department of Biology, Stanford University, Stanford, USA
      name:BioX Program, Stanford University, Stanford, USA
      name:Department of Biology, Stanford University, Stanford, USA
      name:BioX Program, Stanford University, Stanford, USA
WebPageElement:
      isAccessibleForFree:
      cssSelector:.main-content

Social Networks {๐Ÿ‘}(1)

External Links {๐Ÿ”—}(119)

Analytics and Tracking {๐Ÿ“Š}

  • Google Tag Manager

Libraries {๐Ÿ“š}

  • Prism.js
  • Zoom.js

Emails and Hosting {โœ‰๏ธ}

Mail Servers:

  • mxa-002c5801.gslb.pphosted.com
  • mxb-002c5801.gslb.pphosted.com

Name Servers:

  • pdns1.ultradns.net
  • pdns2.ultradns.net
  • pdns3.ultradns.org
  • pdns4.ultradns.org
  • pdns5.ultradns.info
  • pdns6.ultradns.co.uk

CDN Services {๐Ÿ“ฆ}

  • Crossref

5.32s.