Here's how NATURE.COM makes money* and how much!

*Please read our disclaimer before using our estimates.
Loading...

NATURE . COM {}

  1. Analyzed Page
  2. Matching Content Categories
  3. CMS
  4. Monthly Traffic Estimate
  5. How Does Nature.com Make Money
  6. How Much Does Nature.com Make
  7. Keywords
  8. Topics
  9. Questions
  10. Schema
  11. Social Networks
  12. External Links
  13. Analytics And Tracking
  14. Libraries
  15. Hosting Providers
  16. CDN Services

We are analyzing https://www.nature.com/articles/nsmb.1709.

Title:
Ago–TNRC6 triggers microRNA-mediated decay by promoting two deadenylation steps | Nature Structural & Molecular Biology
Description:
miRNAs can repress transcripts through decay. Mammalian miRNA-mediated deadenylation is now shown to involve both the Pan2–Pan3 and the Ccr4–Caf1 deadenylases. Such deadenylation can be triggered by tethered Ago or TNRC6 and is followed by decapping of the reporter. MicroRNAs (miRNAs) silence the expression of their mRNA targets mainly by promoting mRNA decay. The mechanism, kinetics and participating enzymes for miRNA-mediated decay in mammalian cells remain largely unclear. Combining the approaches of transcriptional pulsing, RNA tethering, overexpression of dominant-negative mutants, and siRNA-mediated gene knockdown, we show that let-7 miRNA-induced silencing complexes (miRISCs), which contain the proteins Argonaute (Ago) and TNRC6 (also known as GW182), trigger very rapid mRNA decay by inducing accelerated biphasic deadenylation mediated by Pan2–Pan3 and Ccr4–Caf1 deadenylase complexes followed by Dcp1–Dcp2 complex–directed decapping in mammalian cells. When tethered to mRNAs, all four human Ago proteins and TNRC6C are each able to recapitulate the two deadenylation steps. Two conserved human Ago2 phenylalanines (Phe470 and Phe505) are critical for recruiting TNRC6 to promote deadenylation. These findings indicate that promotion of biphasic deadenylation to trigger mRNA decay is an intrinsic property of miRISCs.
Website Age:
30 years and 10 months (reg. 1994-08-11).

Matching Content Categories {📚}

  • Education
  • Science
  • Telecommunications

Content Management System {📝}

What CMS is nature.com built with?

Custom-built

No common CMS systems were detected on Nature.com, and no known web development framework was identified.

Traffic Estimate {📈}

What is the average monthly size of nature.com audience?

🌠 Phenomenal Traffic: 5M - 10M visitors per month


Based on our best estimate, this website will receive around 5,000,019 visitors per month in the current month.
However, some sources were not loaded, we suggest to reload the page to get complete results.

check SE Ranking
check Ahrefs
check Similarweb
check Ubersuggest
check Semrush

How Does Nature.com Make Money? {💸}


Display Ads {🎯}


The website utilizes display ads within its content to generate revenue. Check the next section for further revenue estimates.

Ads are managed by yourbow.com. Particular relationships are as follows:

Direct Advertisers (10)
google.com, pmc.com, doceree.com, yourbow.com, audienciad.com, onlinemediasolutions.com, advibe.media, aps.amazon.com, getmediamx.com, onomagic.com

Reseller Advertisers (38)
conversantmedia.com, rubiconproject.com, pubmatic.com, appnexus.com, openx.com, smartadserver.com, lijit.com, sharethrough.com, video.unrulymedia.com, google.com, yahoo.com, triplelift.com, onetag.com, sonobi.com, contextweb.com, 33across.com, indexexchange.com, media.net, themediagrid.com, adform.com, richaudience.com, sovrn.com, improvedigital.com, freewheel.tv, smaato.com, yieldmo.com, amxrtb.com, adyoulike.com, adpone.com, criteo.com, smilewanted.com, 152media.info, e-planning.net, smartyads.com, loopme.com, opera.com, mediafuse.com, betweendigital.com

How Much Does Nature.com Make? {💰}


Display Ads {🎯}

$63,100 per month
Our estimates place Nature.com's monthly online earnings from display ads at $42,042 to $115,616.

Keywords {🔍}

article, google, scholar, cas, mrna, nature, cell, biol, rna, mammalian, deadenylation, decay, shyu, human, access, chen, micrornas, proteins, mol, protein, biology, cells, nat, repression, content, molecular, ago, microrna, cookies, gene, mrnas, translational, regulation, usa, privacy, data, micrornamediated, mirnamediated, silencing, argonaute, open, translation, science, cya, university, function, information, promoting, zheng, mirnas,

Topics {✒️}

nature portfolio permissions reprints privacy policy advertising social media author information authors nature 431 nature 433 nature 455 nature dcp1–dcp2 complex–directed decapping multiple gw-rich regions mirna-mediated gene silencing microrna-mediated gene silencing sirna-mediated gene knockdown ann-bin shyu author correspondence mirna-mediated translational repression microrna-mediated translational repression early-response-gene mrnas multiple argonaute-binding sites mammalian cell-free system springerlink instant access affect pabp-dependent deadenylation deadenylation steps chyi-ying p-body component gw182 permissions ccr4–caf1 deadenylase complexes personal data mirna-mediated decay au-rich elements molecular biology mammalian p-bodies mirna-mediated repression data protection analyzed data microrna-directed cleavage c-terminal half dcp2 decapping complexes mammalian mrna turnover protein synthesis induced human ago2 binds privacy microrna-dependent localization cold spring harbor purine-rich motifs c-terminal domains c-terminal domain rapid mrna decay cold spring harb

Questions {❓}

  • Decoding ARE-mediated decay: is microRNA part of the equation?
  • How do microRNAs regulate gene expression?
  • Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight?

Schema {🗺️}

WebPage:
      mainEntity:
         headline:Ago–TNRC6 triggers microRNA-mediated decay by promoting two deadenylation steps
         description:miRNAs can repress transcripts through decay. Mammalian miRNA-mediated deadenylation is now shown to involve both the Pan2–Pan3 and the Ccr4–Caf1 deadenylases. Such deadenylation can be triggered by tethered Ago or TNRC6 and is followed by decapping of the reporter. MicroRNAs (miRNAs) silence the expression of their mRNA targets mainly by promoting mRNA decay. The mechanism, kinetics and participating enzymes for miRNA-mediated decay in mammalian cells remain largely unclear. Combining the approaches of transcriptional pulsing, RNA tethering, overexpression of dominant-negative mutants, and siRNA-mediated gene knockdown, we show that let-7 miRNA-induced silencing complexes (miRISCs), which contain the proteins Argonaute (Ago) and TNRC6 (also known as GW182), trigger very rapid mRNA decay by inducing accelerated biphasic deadenylation mediated by Pan2–Pan3 and Ccr4–Caf1 deadenylase complexes followed by Dcp1–Dcp2 complex–directed decapping in mammalian cells. When tethered to mRNAs, all four human Ago proteins and TNRC6C are each able to recapitulate the two deadenylation steps. Two conserved human Ago2 phenylalanines (Phe470 and Phe505) are critical for recruiting TNRC6 to promote deadenylation. These findings indicate that promotion of biphasic deadenylation to trigger mRNA decay is an intrinsic property of miRISCs.
         datePublished:2009-10-18T00:00:00Z
         dateModified:2009-10-18T00:00:00Z
         pageStart:1160
         pageEnd:1166
         sameAs:https://doi.org/10.1038/nsmb.1709
         keywords:
            Life Sciences
            general
            Biochemistry
            Protein Structure
            Membrane Biology
            Biological Microscopy
         image:
            https://media.springernature.com/lw1200/springer-static/image/art%3A10.1038%2Fnsmb.1709/MediaObjects/41594_2009_Article_BFnsmb1709_Fig1_HTML.jpg
            https://media.springernature.com/lw1200/springer-static/image/art%3A10.1038%2Fnsmb.1709/MediaObjects/41594_2009_Article_BFnsmb1709_Fig2_HTML.jpg
            https://media.springernature.com/lw1200/springer-static/image/art%3A10.1038%2Fnsmb.1709/MediaObjects/41594_2009_Article_BFnsmb1709_Fig3_HTML.jpg
            https://media.springernature.com/lw1200/springer-static/image/art%3A10.1038%2Fnsmb.1709/MediaObjects/41594_2009_Article_BFnsmb1709_Fig4_HTML.jpg
            https://media.springernature.com/lw1200/springer-static/image/art%3A10.1038%2Fnsmb.1709/MediaObjects/41594_2009_Article_BFnsmb1709_Fig5_HTML.jpg
         isPartOf:
            name:Nature Structural & Molecular Biology
            issn:
               1545-9985
               1545-9993
            volumeNumber:16
            type:
               Periodical
               PublicationVolume
         publisher:
            name:Nature Publishing Group US
            logo:
               url:https://www.springernature.com/app-sn/public/images/logo-springernature.png
               type:ImageObject
            type:Organization
         author:
               name:Chyi-Ying A Chen
               affiliation:
                     name:The University of Texas Medical School
                     address:
                        name:Department of Biochemistry and Molecular Biology, The University of Texas Medical School, Houston, USA
                        type:PostalAddress
                     type:Organization
               type:Person
               name:Dinghai Zheng
               affiliation:
                     name:The University of Texas Medical School
                     address:
                        name:Department of Biochemistry and Molecular Biology, The University of Texas Medical School, Houston, USA
                        type:PostalAddress
                     type:Organization
               type:Person
               name:Zhenfang Xia
               affiliation:
                     name:The University of Texas Medical School
                     address:
                        name:Department of Biochemistry and Molecular Biology, The University of Texas Medical School, Houston, USA
                        type:PostalAddress
                     type:Organization
               type:Person
               name:Ann-Bin Shyu
               affiliation:
                     name:The University of Texas Medical School
                     address:
                        name:Department of Biochemistry and Molecular Biology, The University of Texas Medical School, Houston, USA
                        type:PostalAddress
                     type:Organization
               email:[email protected]
               type:Person
         isAccessibleForFree:
         hasPart:
            isAccessibleForFree:
            cssSelector:.main-content
            type:WebPageElement
         type:ScholarlyArticle
      context:https://schema.org
ScholarlyArticle:
      headline:Ago–TNRC6 triggers microRNA-mediated decay by promoting two deadenylation steps
      description:miRNAs can repress transcripts through decay. Mammalian miRNA-mediated deadenylation is now shown to involve both the Pan2–Pan3 and the Ccr4–Caf1 deadenylases. Such deadenylation can be triggered by tethered Ago or TNRC6 and is followed by decapping of the reporter. MicroRNAs (miRNAs) silence the expression of their mRNA targets mainly by promoting mRNA decay. The mechanism, kinetics and participating enzymes for miRNA-mediated decay in mammalian cells remain largely unclear. Combining the approaches of transcriptional pulsing, RNA tethering, overexpression of dominant-negative mutants, and siRNA-mediated gene knockdown, we show that let-7 miRNA-induced silencing complexes (miRISCs), which contain the proteins Argonaute (Ago) and TNRC6 (also known as GW182), trigger very rapid mRNA decay by inducing accelerated biphasic deadenylation mediated by Pan2–Pan3 and Ccr4–Caf1 deadenylase complexes followed by Dcp1–Dcp2 complex–directed decapping in mammalian cells. When tethered to mRNAs, all four human Ago proteins and TNRC6C are each able to recapitulate the two deadenylation steps. Two conserved human Ago2 phenylalanines (Phe470 and Phe505) are critical for recruiting TNRC6 to promote deadenylation. These findings indicate that promotion of biphasic deadenylation to trigger mRNA decay is an intrinsic property of miRISCs.
      datePublished:2009-10-18T00:00:00Z
      dateModified:2009-10-18T00:00:00Z
      pageStart:1160
      pageEnd:1166
      sameAs:https://doi.org/10.1038/nsmb.1709
      keywords:
         Life Sciences
         general
         Biochemistry
         Protein Structure
         Membrane Biology
         Biological Microscopy
      image:
         https://media.springernature.com/lw1200/springer-static/image/art%3A10.1038%2Fnsmb.1709/MediaObjects/41594_2009_Article_BFnsmb1709_Fig1_HTML.jpg
         https://media.springernature.com/lw1200/springer-static/image/art%3A10.1038%2Fnsmb.1709/MediaObjects/41594_2009_Article_BFnsmb1709_Fig2_HTML.jpg
         https://media.springernature.com/lw1200/springer-static/image/art%3A10.1038%2Fnsmb.1709/MediaObjects/41594_2009_Article_BFnsmb1709_Fig3_HTML.jpg
         https://media.springernature.com/lw1200/springer-static/image/art%3A10.1038%2Fnsmb.1709/MediaObjects/41594_2009_Article_BFnsmb1709_Fig4_HTML.jpg
         https://media.springernature.com/lw1200/springer-static/image/art%3A10.1038%2Fnsmb.1709/MediaObjects/41594_2009_Article_BFnsmb1709_Fig5_HTML.jpg
      isPartOf:
         name:Nature Structural & Molecular Biology
         issn:
            1545-9985
            1545-9993
         volumeNumber:16
         type:
            Periodical
            PublicationVolume
      publisher:
         name:Nature Publishing Group US
         logo:
            url:https://www.springernature.com/app-sn/public/images/logo-springernature.png
            type:ImageObject
         type:Organization
      author:
            name:Chyi-Ying A Chen
            affiliation:
                  name:The University of Texas Medical School
                  address:
                     name:Department of Biochemistry and Molecular Biology, The University of Texas Medical School, Houston, USA
                     type:PostalAddress
                  type:Organization
            type:Person
            name:Dinghai Zheng
            affiliation:
                  name:The University of Texas Medical School
                  address:
                     name:Department of Biochemistry and Molecular Biology, The University of Texas Medical School, Houston, USA
                     type:PostalAddress
                  type:Organization
            type:Person
            name:Zhenfang Xia
            affiliation:
                  name:The University of Texas Medical School
                  address:
                     name:Department of Biochemistry and Molecular Biology, The University of Texas Medical School, Houston, USA
                     type:PostalAddress
                  type:Organization
            type:Person
            name:Ann-Bin Shyu
            affiliation:
                  name:The University of Texas Medical School
                  address:
                     name:Department of Biochemistry and Molecular Biology, The University of Texas Medical School, Houston, USA
                     type:PostalAddress
                  type:Organization
            email:[email protected]
            type:Person
      isAccessibleForFree:
      hasPart:
         isAccessibleForFree:
         cssSelector:.main-content
         type:WebPageElement
["Periodical","PublicationVolume"]:
      name:Nature Structural & Molecular Biology
      issn:
         1545-9985
         1545-9993
      volumeNumber:16
Organization:
      name:Nature Publishing Group US
      logo:
         url:https://www.springernature.com/app-sn/public/images/logo-springernature.png
         type:ImageObject
      name:The University of Texas Medical School
      address:
         name:Department of Biochemistry and Molecular Biology, The University of Texas Medical School, Houston, USA
         type:PostalAddress
      name:The University of Texas Medical School
      address:
         name:Department of Biochemistry and Molecular Biology, The University of Texas Medical School, Houston, USA
         type:PostalAddress
      name:The University of Texas Medical School
      address:
         name:Department of Biochemistry and Molecular Biology, The University of Texas Medical School, Houston, USA
         type:PostalAddress
      name:The University of Texas Medical School
      address:
         name:Department of Biochemistry and Molecular Biology, The University of Texas Medical School, Houston, USA
         type:PostalAddress
ImageObject:
      url:https://www.springernature.com/app-sn/public/images/logo-springernature.png
Person:
      name:Chyi-Ying A Chen
      affiliation:
            name:The University of Texas Medical School
            address:
               name:Department of Biochemistry and Molecular Biology, The University of Texas Medical School, Houston, USA
               type:PostalAddress
            type:Organization
      name:Dinghai Zheng
      affiliation:
            name:The University of Texas Medical School
            address:
               name:Department of Biochemistry and Molecular Biology, The University of Texas Medical School, Houston, USA
               type:PostalAddress
            type:Organization
      name:Zhenfang Xia
      affiliation:
            name:The University of Texas Medical School
            address:
               name:Department of Biochemistry and Molecular Biology, The University of Texas Medical School, Houston, USA
               type:PostalAddress
            type:Organization
      name:Ann-Bin Shyu
      affiliation:
            name:The University of Texas Medical School
            address:
               name:Department of Biochemistry and Molecular Biology, The University of Texas Medical School, Houston, USA
               type:PostalAddress
            type:Organization
      email:[email protected]
PostalAddress:
      name:Department of Biochemistry and Molecular Biology, The University of Texas Medical School, Houston, USA
      name:Department of Biochemistry and Molecular Biology, The University of Texas Medical School, Houston, USA
      name:Department of Biochemistry and Molecular Biology, The University of Texas Medical School, Houston, USA
      name:Department of Biochemistry and Molecular Biology, The University of Texas Medical School, Houston, USA
WebPageElement:
      isAccessibleForFree:
      cssSelector:.main-content

Social Networks {👍}(1)

External Links {🔗}(131)

Analytics and Tracking {📊}

  • Google Tag Manager

Libraries {📚}

  • Prism.js
  • Zoom.js

Emails and Hosting {✉️}

Mail Servers:

  • mxa-002c5801.gslb.pphosted.com
  • mxb-002c5801.gslb.pphosted.com

Name Servers:

  • pdns1.ultradns.net
  • pdns2.ultradns.net
  • pdns3.ultradns.org
  • pdns4.ultradns.org
  • pdns5.ultradns.info
  • pdns6.ultradns.co.uk

CDN Services {📦}

  • Crossref

4.52s.