
NATURE . COM {
}
Title:
REST maintains self-renewal and pluripotency of embryonic stem cells | Nature
Description:
The neuronal repressor protein REST (also known as NRSF) maintains self renewal and pluripotency in embryonic stem cells through suppression of the miRNA-21, and is therefore a newly identified member of the transcriptional network maintaining stem cells in a pluripotent state. Knocking down its activity by using of siRNA or deletion of one allele caused loss of self renewal and led the cells to express differentiated markers. The neuronal repressor REST (RE1-silencing transcription factor; also called NRSF) is expressed at high levels in mouse embryonic stem (ES) cells1, but its role in these cells is unclear. Here we show that REST maintains self-renewal and pluripotency in mouse ES cells through suppression of the microRNA miR-21. We found that, as with known self-renewal markers, the level of REST expression is much higher in self-renewing mouse ES cells than in differentiating mouse ES (embryoid body, EB) cells. Heterozygous deletion of Rest (Rest+/-) and its short-interfering-RNA-mediated knockdown in mouse ES cells cause a loss of self-renewal—even when these cells are grown under self-renewal conditions—and lead to the expression of markers specific for multiple lineages. Conversely, exogenously added REST maintains self-renewal in mouse EB cells. Furthermore, Rest+/- mouse ES cells cultured under self-renewal conditions express substantially reduced levels of several self-renewal regulators, including Oct4 (also called Pou5f1), Nanog, Sox2 and c-Myc, and exogenously added REST in mouse EB cells maintains the self-renewal phenotypes and expression of these self-renewal regulators. We also show that in mouse ES cells, REST is bound to the gene chromatin of a set of miRNAs that potentially target self-renewal genes. Whereas mouse ES cells and mouse EB cells containing exogenously added REST express lower levels of these miRNAs, EB cells, Rest+/- ES cells and ES cells treated with short interfering RNA targeting Rest express higher levels of these miRNAs. At least one of these REST-regulated miRNAs, miR-21, specifically suppresses the self-renewal of mouse ES cells, corresponding to the decreased expression of Oct4, Nanog, Sox2 and c-Myc. Thus, REST is a newly discovered element of the interconnected regulatory network that maintains the self-renewal and pluripotency of mouse ES cells.
Website Age:
30 years and 10 months (reg. 1994-08-11).
Matching Content Categories {📚}
- Science
- Technology & Computing
- Health & Fitness
Content Management System {📝}
What CMS is nature.com built with?
Custom-built
No common CMS systems were detected on Nature.com, and no known web development framework was identified.
Traffic Estimate {📈}
What is the average monthly size of nature.com audience?
🌆 Monumental Traffic: 20M - 50M visitors per month
Based on our best estimate, this website will receive around 42,554,915 visitors per month in the current month.
check SE Ranking
check Ahrefs
check Similarweb
check Ubersuggest
check Semrush
How Does Nature.com Make Money? {💸}
Display Ads {🎯}
The website utilizes display ads within its content to generate revenue. Check the next section for further revenue estimates.
Ads are managed by yourbow.com. Particular relationships are as follows:
Direct Advertisers (10)
google.com, pmc.com, doceree.com, yourbow.com, audienciad.com, onlinemediasolutions.com, advibe.media, aps.amazon.com, getmediamx.com, onomagic.comReseller Advertisers (38)
conversantmedia.com, rubiconproject.com, pubmatic.com, appnexus.com, openx.com, smartadserver.com, lijit.com, sharethrough.com, video.unrulymedia.com, google.com, yahoo.com, triplelift.com, onetag.com, sonobi.com, contextweb.com, 33across.com, indexexchange.com, media.net, themediagrid.com, adform.com, richaudience.com, sovrn.com, improvedigital.com, freewheel.tv, smaato.com, yieldmo.com, amxrtb.com, adyoulike.com, adpone.com, criteo.com, smilewanted.com, 152media.info, e-planning.net, smartyads.com, loopme.com, opera.com, mediafuse.com, betweendigital.comHow Much Does Nature.com Make? {💰}
Display Ads {🎯}
$536,300 per month
Our calculations suggest that Nature.com earns between $357,503 and $983,134 monthly online from display advertisements.
Keywords {🔍}
article, cells, nature, rest, cas, google, scholar, stem, mouse, embryonic, cell, selfrenewal, pluripotency, access, neuronal, majumder, content, genes, cancer, supplementary, sadhan, expression, usa, cookies, information, maintains, kagalwala, transcription, mirnas, development, biol, differentiation, privacy, singh, mohamedi, network, transcriptional, open, ads, author, data, journal, sanjay, levels, nanog, chromatin, references, proc, natl, acad,
Topics {✒️}
crispr/cas9-based genome-wide screening nature portfolio permissions reprints short-interfering-rna-mediated knockdown privacy policy germ-line-competent embryonic stem advertising nature cell biol social media re1-silencing transcription factor nature rev nature med stanton nature fisher nature early embryonic development nature genet /neuron-restrictive silencer factor nature 444 nature 453 nature neural stem/progenitor cells jørgensenzhou-feng chenamanda brain tumor center neuronal repressor rest/nrsf personal data springerlink instant access data protection permissions mouse embryonic stem rest/nrsf target genes author contributions author correspondence newly discovered element embryonic stem cells exogenously added rest neuronal repressor rest neural stem cells privacy α-fetoprotein transcription interconnected regulatory network promoter analysis based stem cell differentiation mouse es cells differentiating mouse es gene regulatory network blocking neuronal differentiation mouse eb cells jan parker-thornburg mirna target sites protein interaction network
Questions {❓}
- Can controversies be put to REST?
- Is REST a regulator of pluripotency?
- Is REST required for ESC pluripotency?
Schema {🗺️}
WebPage:
mainEntity:
headline:REST maintains self-renewal and pluripotency of embryonic stem cells
description:The neuronal repressor protein REST (also known as NRSF) maintains self renewal and pluripotency in embryonic stem cells through suppression of the miRNA-21, and is therefore a newly identified member of the transcriptional network maintaining stem cells in a pluripotent state. Knocking down its activity by using of siRNA or deletion of one allele caused loss of self renewal and led the cells to express differentiated markers. The neuronal repressor REST (RE1-silencing transcription factor; also called NRSF) is expressed at high levels in mouse embryonic stem (ES) cells1, but its role in these cells is unclear. Here we show that REST maintains self-renewal and pluripotency in mouse ES cells through suppression of the microRNA miR-21. We found that, as with known self-renewal markers, the level of REST expression is much higher in self-renewing mouse ES cells than in differentiating mouse ES (embryoid body, EB) cells. Heterozygous deletion of Rest (Rest+/-) and its short-interfering-RNA-mediated knockdown in mouse ES cells cause a loss of self-renewalâeven when these cells are grown under self-renewal conditionsâand lead to the expression of markers specific for multiple lineages. Conversely, exogenously added REST maintains self-renewal in mouse EB cells. Furthermore, Rest+/- mouse ES cells cultured under self-renewal conditions express substantially reduced levels of several self-renewal regulators, including Oct4 (also called Pou5f1), Nanog, Sox2 and c-Myc, and exogenously added REST in mouse EB cells maintains the self-renewal phenotypes and expression of these self-renewal regulators. We also show that in mouse ES cells, REST is bound to the gene chromatin of a set of miRNAs that potentially target self-renewal genes. Whereas mouse ES cells and mouse EB cells containing exogenously added REST express lower levels of these miRNAs, EB cells, Rest+/- ES cells and ES cells treated with short interfering RNA targeting Rest express higher levels of these miRNAs. At least one of these REST-regulated miRNAs, miR-21, specifically suppresses the self-renewal of mouse ES cells, corresponding to the decreased expression of Oct4, Nanog, Sox2 and c-Myc. Thus, REST is a newly discovered element of the interconnected regulatory network that maintains the self-renewal and pluripotency of mouse ES cells.
datePublished:2008-03-23T00:00:00Z
dateModified:2008-03-23T00:00:00Z
pageStart:223
pageEnd:227
sameAs:https://doi.org/10.1038/nature06863
keywords:
Science
Humanities and Social Sciences
multidisciplinary
image:
https://media.springernature.com/lw1200/springer-static/image/art%3A10.1038%2Fnature06863/MediaObjects/41586_2008_Article_BFnature06863_Fig1_HTML.jpg
https://media.springernature.com/lw1200/springer-static/image/art%3A10.1038%2Fnature06863/MediaObjects/41586_2008_Article_BFnature06863_Fig2_HTML.jpg
https://media.springernature.com/lw1200/springer-static/image/art%3A10.1038%2Fnature06863/MediaObjects/41586_2008_Article_BFnature06863_Fig3_HTML.jpg
https://media.springernature.com/lw1200/springer-static/image/art%3A10.1038%2Fnature06863/MediaObjects/41586_2008_Article_BFnature06863_Fig4_HTML.jpg
isPartOf:
name:Nature
issn:
1476-4687
0028-0836
volumeNumber:453
type:
Periodical
PublicationVolume
publisher:
name:Nature Publishing Group UK
logo:
url:https://www.springernature.com/app-sn/public/images/logo-springernature.png
type:ImageObject
type:Organization
author:
name:Sanjay K. Singh
affiliation:
name:Department of Cancer Genetics,
address:
name:Department of Cancer Genetics,,
type:PostalAddress
type:Organization
name:Center for Stem Cell and Developmental Biology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, USA
address:
name:Center for Stem Cell and Developmental Biology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, USA ,
type:PostalAddress
type:Organization
type:Person
name:Mohamedi N. Kagalwala
affiliation:
name:Department of Cancer Genetics,
address:
name:Department of Cancer Genetics,,
type:PostalAddress
type:Organization
name:Center for Stem Cell and Developmental Biology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, USA
address:
name:Center for Stem Cell and Developmental Biology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, USA ,
type:PostalAddress
type:Organization
name:Present address: Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, California 92037, USA.
address:
name:Present address: Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, California 92037, USA.,
type:PostalAddress
type:Organization
type:Person
name:Jan Parker-Thornburg
affiliation:
name:Department of Biochemistry and Molecular Biology,
address:
name:Department of Biochemistry and Molecular Biology,,
type:PostalAddress
type:Organization
type:Person
name:Henry Adams
affiliation:
name:Department of Cancer Genetics,
address:
name:Department of Cancer Genetics,,
type:PostalAddress
type:Organization
type:Person
name:Sadhan Majumder
affiliation:
name:Department of Cancer Genetics,
address:
name:Department of Cancer Genetics,,
type:PostalAddress
type:Organization
name:Department of Neuro-Oncology,
address:
name:Department of Neuro-Oncology,,
type:PostalAddress
type:Organization
name:The Brain Tumor Center,
address:
name:The Brain Tumor Center,,
type:PostalAddress
type:Organization
name:Center for Stem Cell and Developmental Biology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, USA
address:
name:Center for Stem Cell and Developmental Biology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, USA ,
type:PostalAddress
type:Organization
name: Program in Genes and Development, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas 77030, USA
address:
name: Program in Genes and Development, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas 77030, USA ,
type:PostalAddress
type:Organization
email:[email protected]
type:Person
isAccessibleForFree:
hasPart:
isAccessibleForFree:
cssSelector:.main-content
type:WebPageElement
type:ScholarlyArticle
context:https://schema.org
ScholarlyArticle:
headline:REST maintains self-renewal and pluripotency of embryonic stem cells
description:The neuronal repressor protein REST (also known as NRSF) maintains self renewal and pluripotency in embryonic stem cells through suppression of the miRNA-21, and is therefore a newly identified member of the transcriptional network maintaining stem cells in a pluripotent state. Knocking down its activity by using of siRNA or deletion of one allele caused loss of self renewal and led the cells to express differentiated markers. The neuronal repressor REST (RE1-silencing transcription factor; also called NRSF) is expressed at high levels in mouse embryonic stem (ES) cells1, but its role in these cells is unclear. Here we show that REST maintains self-renewal and pluripotency in mouse ES cells through suppression of the microRNA miR-21. We found that, as with known self-renewal markers, the level of REST expression is much higher in self-renewing mouse ES cells than in differentiating mouse ES (embryoid body, EB) cells. Heterozygous deletion of Rest (Rest+/-) and its short-interfering-RNA-mediated knockdown in mouse ES cells cause a loss of self-renewalâeven when these cells are grown under self-renewal conditionsâand lead to the expression of markers specific for multiple lineages. Conversely, exogenously added REST maintains self-renewal in mouse EB cells. Furthermore, Rest+/- mouse ES cells cultured under self-renewal conditions express substantially reduced levels of several self-renewal regulators, including Oct4 (also called Pou5f1), Nanog, Sox2 and c-Myc, and exogenously added REST in mouse EB cells maintains the self-renewal phenotypes and expression of these self-renewal regulators. We also show that in mouse ES cells, REST is bound to the gene chromatin of a set of miRNAs that potentially target self-renewal genes. Whereas mouse ES cells and mouse EB cells containing exogenously added REST express lower levels of these miRNAs, EB cells, Rest+/- ES cells and ES cells treated with short interfering RNA targeting Rest express higher levels of these miRNAs. At least one of these REST-regulated miRNAs, miR-21, specifically suppresses the self-renewal of mouse ES cells, corresponding to the decreased expression of Oct4, Nanog, Sox2 and c-Myc. Thus, REST is a newly discovered element of the interconnected regulatory network that maintains the self-renewal and pluripotency of mouse ES cells.
datePublished:2008-03-23T00:00:00Z
dateModified:2008-03-23T00:00:00Z
pageStart:223
pageEnd:227
sameAs:https://doi.org/10.1038/nature06863
keywords:
Science
Humanities and Social Sciences
multidisciplinary
image:
https://media.springernature.com/lw1200/springer-static/image/art%3A10.1038%2Fnature06863/MediaObjects/41586_2008_Article_BFnature06863_Fig1_HTML.jpg
https://media.springernature.com/lw1200/springer-static/image/art%3A10.1038%2Fnature06863/MediaObjects/41586_2008_Article_BFnature06863_Fig2_HTML.jpg
https://media.springernature.com/lw1200/springer-static/image/art%3A10.1038%2Fnature06863/MediaObjects/41586_2008_Article_BFnature06863_Fig3_HTML.jpg
https://media.springernature.com/lw1200/springer-static/image/art%3A10.1038%2Fnature06863/MediaObjects/41586_2008_Article_BFnature06863_Fig4_HTML.jpg
isPartOf:
name:Nature
issn:
1476-4687
0028-0836
volumeNumber:453
type:
Periodical
PublicationVolume
publisher:
name:Nature Publishing Group UK
logo:
url:https://www.springernature.com/app-sn/public/images/logo-springernature.png
type:ImageObject
type:Organization
author:
name:Sanjay K. Singh
affiliation:
name:Department of Cancer Genetics,
address:
name:Department of Cancer Genetics,,
type:PostalAddress
type:Organization
name:Center for Stem Cell and Developmental Biology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, USA
address:
name:Center for Stem Cell and Developmental Biology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, USA ,
type:PostalAddress
type:Organization
type:Person
name:Mohamedi N. Kagalwala
affiliation:
name:Department of Cancer Genetics,
address:
name:Department of Cancer Genetics,,
type:PostalAddress
type:Organization
name:Center for Stem Cell and Developmental Biology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, USA
address:
name:Center for Stem Cell and Developmental Biology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, USA ,
type:PostalAddress
type:Organization
name:Present address: Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, California 92037, USA.
address:
name:Present address: Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, California 92037, USA.,
type:PostalAddress
type:Organization
type:Person
name:Jan Parker-Thornburg
affiliation:
name:Department of Biochemistry and Molecular Biology,
address:
name:Department of Biochemistry and Molecular Biology,,
type:PostalAddress
type:Organization
type:Person
name:Henry Adams
affiliation:
name:Department of Cancer Genetics,
address:
name:Department of Cancer Genetics,,
type:PostalAddress
type:Organization
type:Person
name:Sadhan Majumder
affiliation:
name:Department of Cancer Genetics,
address:
name:Department of Cancer Genetics,,
type:PostalAddress
type:Organization
name:Department of Neuro-Oncology,
address:
name:Department of Neuro-Oncology,,
type:PostalAddress
type:Organization
name:The Brain Tumor Center,
address:
name:The Brain Tumor Center,,
type:PostalAddress
type:Organization
name:Center for Stem Cell and Developmental Biology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, USA
address:
name:Center for Stem Cell and Developmental Biology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, USA ,
type:PostalAddress
type:Organization
name: Program in Genes and Development, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas 77030, USA
address:
name: Program in Genes and Development, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas 77030, USA ,
type:PostalAddress
type:Organization
email:[email protected]
type:Person
isAccessibleForFree:
hasPart:
isAccessibleForFree:
cssSelector:.main-content
type:WebPageElement
["Periodical","PublicationVolume"]:
name:Nature
issn:
1476-4687
0028-0836
volumeNumber:453
Organization:
name:Nature Publishing Group UK
logo:
url:https://www.springernature.com/app-sn/public/images/logo-springernature.png
type:ImageObject
name:Department of Cancer Genetics,
address:
name:Department of Cancer Genetics,,
type:PostalAddress
name:Center for Stem Cell and Developmental Biology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, USA
address:
name:Center for Stem Cell and Developmental Biology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, USA ,
type:PostalAddress
name:Department of Cancer Genetics,
address:
name:Department of Cancer Genetics,,
type:PostalAddress
name:Center for Stem Cell and Developmental Biology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, USA
address:
name:Center for Stem Cell and Developmental Biology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, USA ,
type:PostalAddress
name:Present address: Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, California 92037, USA.
address:
name:Present address: Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, California 92037, USA.,
type:PostalAddress
name:Department of Biochemistry and Molecular Biology,
address:
name:Department of Biochemistry and Molecular Biology,,
type:PostalAddress
name:Department of Cancer Genetics,
address:
name:Department of Cancer Genetics,,
type:PostalAddress
name:Department of Cancer Genetics,
address:
name:Department of Cancer Genetics,,
type:PostalAddress
name:Department of Neuro-Oncology,
address:
name:Department of Neuro-Oncology,,
type:PostalAddress
name:The Brain Tumor Center,
address:
name:The Brain Tumor Center,,
type:PostalAddress
name:Center for Stem Cell and Developmental Biology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, USA
address:
name:Center for Stem Cell and Developmental Biology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, USA ,
type:PostalAddress
name: Program in Genes and Development, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas 77030, USA
address:
name: Program in Genes and Development, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas 77030, USA ,
type:PostalAddress
ImageObject:
url:https://www.springernature.com/app-sn/public/images/logo-springernature.png
Person:
name:Sanjay K. Singh
affiliation:
name:Department of Cancer Genetics,
address:
name:Department of Cancer Genetics,,
type:PostalAddress
type:Organization
name:Center for Stem Cell and Developmental Biology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, USA
address:
name:Center for Stem Cell and Developmental Biology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, USA ,
type:PostalAddress
type:Organization
name:Mohamedi N. Kagalwala
affiliation:
name:Department of Cancer Genetics,
address:
name:Department of Cancer Genetics,,
type:PostalAddress
type:Organization
name:Center for Stem Cell and Developmental Biology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, USA
address:
name:Center for Stem Cell and Developmental Biology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, USA ,
type:PostalAddress
type:Organization
name:Present address: Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, California 92037, USA.
address:
name:Present address: Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, California 92037, USA.,
type:PostalAddress
type:Organization
name:Jan Parker-Thornburg
affiliation:
name:Department of Biochemistry and Molecular Biology,
address:
name:Department of Biochemistry and Molecular Biology,,
type:PostalAddress
type:Organization
name:Henry Adams
affiliation:
name:Department of Cancer Genetics,
address:
name:Department of Cancer Genetics,,
type:PostalAddress
type:Organization
name:Sadhan Majumder
affiliation:
name:Department of Cancer Genetics,
address:
name:Department of Cancer Genetics,,
type:PostalAddress
type:Organization
name:Department of Neuro-Oncology,
address:
name:Department of Neuro-Oncology,,
type:PostalAddress
type:Organization
name:The Brain Tumor Center,
address:
name:The Brain Tumor Center,,
type:PostalAddress
type:Organization
name:Center for Stem Cell and Developmental Biology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, USA
address:
name:Center for Stem Cell and Developmental Biology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, USA ,
type:PostalAddress
type:Organization
name: Program in Genes and Development, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas 77030, USA
address:
name: Program in Genes and Development, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas 77030, USA ,
type:PostalAddress
type:Organization
email:[email protected]
PostalAddress:
name:Department of Cancer Genetics,,
name:Center for Stem Cell and Developmental Biology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, USA ,
name:Department of Cancer Genetics,,
name:Center for Stem Cell and Developmental Biology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, USA ,
name:Present address: Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, California 92037, USA.,
name:Department of Biochemistry and Molecular Biology,,
name:Department of Cancer Genetics,,
name:Department of Cancer Genetics,,
name:Department of Neuro-Oncology,,
name:The Brain Tumor Center,,
name:Center for Stem Cell and Developmental Biology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, USA ,
name: Program in Genes and Development, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas 77030, USA ,
WebPageElement:
isAccessibleForFree:
cssSelector:.main-content
External Links {🔗}(76)
- What are the earnings of https://link.springer.com/article/10.1038/nature06863?utm_source=nature&utm_medium=referral&utm_campaign=buyArticle?
- What's the revenue for https://doi.org/10.1016%2Fj.cell.2005.03.013?
- What's the total monthly financial gain of http://scholar.google.com/scholar_lookup?&title=REST%20and%20its%20corepressors%20mediate%20plasticity%20of%20neuronal%20gene%20chromatin%20throughout%20neurogenesis&journal=Cell&doi=10.1016%2Fj.cell.2005.03.013&volume=121&pages=645-657&publication_year=2005&author=Ballas%2CN&author=Grunseich%2CC&author=Lu%2CDD&author=Speh%2CJC&author=Mandel%2CG?
- How much profit does https://doi.org/10.1016%2Fj.conb.2005.08.015 generate?
- What's the financial outcome of http://scholar.google.com/scholar_lookup?&title=The%20many%20faces%20of%20REST%20oversee%20epigenetic%20programming%20of%20neuronal%20genes&journal=Curr.%20Opin.%20Neurobiol.&doi=10.1016%2Fj.conb.2005.08.015&volume=15&pages=500-506&publication_year=2005&author=Ballas%2CN&author=Mandel%2CG?
- How much income does https://doi.org/10.1038%2Fnrg2100 have?
- How much money does http://scholar.google.com/scholar_lookup?&title=Chromatin%20crosstalk%20in%20development%20and%20disease%3A%20lessons%20from%20REST&journal=Nature%20Rev.%20Genet.&doi=10.1038%2Fnrg2100&volume=8&pages=544-554&publication_year=2007&author=Ooi%2CL&author=Wood%2CIC make?
- Discover the revenue of https://doi.org/10.1016%2Fj.cub.2005.08.032
- See how much http://scholar.google.com/scholar_lookup?&title=Transcriptional%20regulation%3A%20cancer%2C%20neurons%20and%20the%20REST&journal=Curr.%20Biol.&doi=10.1016%2Fj.cub.2005.08.032&volume=15&pages=R665-R668&publication_year=2005&author=Coulson%2CJM makes per month
- https://doi.org/10.4161%2Fcc.5.17.2982's total income per month
- Find out how much http://scholar.google.com/scholar_lookup?&title=REST%20in%20good%20times%20and%20bad%3A%20roles%20in%20tumor%20suppressor%20and%20oncogenic%20activities&journal=Cell%20Cycle&doi=10.4161%2Fcc.5.17.2982&volume=5&pages=1929-1935&publication_year=2006&author=Majumder%2CS earns monthly
- How much does https://doi.org/10.1128%2FMCB.24.18.8018-8025.2004 generate monthly?
- How much revenue does http://scholar.google.com/scholar_lookup?&title=Activation%20of%20REST%2FNRSF%20target%20genes%20in%20neural%20stem%20cells%20is%20sufficient%20to%20cause%20neuronal%20differentiation&journal=Mol.%20Cell.%20Biol.&doi=10.1128%2FMCB.24.18.8018-8025.2004&volume=24&pages=8018-8025&publication_year=2004&author=Su%2CX&author=Kameoka%2CS&author=Lentz%2CS&author=Majumder%2CS produce monthly?
- How much money does https://doi.org/10.1101%2Fgad.1179004 make?
- http://scholar.google.com/scholar_lookup?&title=Conversion%20of%20myoblasts%20to%20physiologically%20active%20neuronal%20phenotype&journal=Genes%20Dev.&doi=10.1101%2Fgad.1179004&volume=18&pages=889-900&publication_year=2004&author=Watanabe%2CY's total income per month
- How much does https://doi.org/10.1038%2F77565 gross monthly?
- How much does http://scholar.google.com/scholar_lookup?&title=The%20neuronal%20repressor%20REST%2FNRSF%20is%20an%20essential%20regulator%20in%20medulloblastoma%20cells&journal=Nature%20Med.&doi=10.1038%2F77565&volume=6&pages=826-831&publication_year=2000&author=Lawinger%2CP make?
- Get to know http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15767543's earnings
- See how much http://scholar.google.com/scholar_lookup?&title=Many%20human%20medulloblastoma%20tumors%20overexpress%20repressor%20element-1%20silencing%20transcription%20%28REST%29%2Fneuron-restrictive%20silencer%20factor%2C%20which%20can%20be%20functionally%20countered%20by%20REST-VP16&journal=Mol.%20Cancer%20Ther.&volume=4&pages=343-349&publication_year=2005&author=Fuller%2CGN makes per month
- How much money does https://doi.org/10.1128%2FMCB.26.5.1666-1678.2006 make?
- How much money does http://scholar.google.com/scholar_lookup?&title=Abnormal%20expression%20of%20REST%2FNRSF%20and%20Myc%20in%20neural%20stem%2Fprogenitor%20cells%20causes%20cerebellar%20tumors%20by%20blocking%20neuronal%20differentiation&journal=Mol.%20Cell.%20Biol.&doi=10.1128%2FMCB.26.5.1666-1678.2006&volume=26&pages=1666-1678&publication_year=2006&author=Su%2CX make?
- Earnings of https://doi.org/10.1038%2Fsj.cr.7310125
- What's the monthly money flow for http://scholar.google.com/scholar_lookup?&title=Nanog%20and%20transcriptional%20networks%20in%20embryonic%20stem%20cell%20pluripotency&journal=Cell%20Res.&doi=10.1038%2Fsj.cr.7310125&volume=17&pages=42-49&publication_year=2007&author=Pan%2CG&author=Thomson%2CJA?
- How much income does https://doi.org/10.1073%2Fpnas.0509861103 have?
- Earnings of http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&bibcode=2006PNAS..103.6946P
- Get to know what's the income of http://scholar.google.com/scholar_lookup?&title=Genomewide%20gain-of-function%20genetic%20screen%20identifies%20functionally%20active%20genes%20in%20mouse%20embryonic%20stem%20cells&journal=Proc.%20Natl%20Acad.%20Sci.%20USA&doi=10.1073%2Fpnas.0509861103&volume=103&pages=6946-6951&publication_year=2006&author=Pritsker%2CM&author=Ford%2CNR&author=Jenq%2CHT&author=Lemischka%2CIR
- How much does https://doi.org/10.1038%2Fng1760 net monthly?
- http://scholar.google.com/scholar_lookup?&title=The%20Oct4%20and%20Nanog%20transcription%20network%20regulates%20pluripotency%20in%20mouse%20embryonic%20stem%20cells&journal=Nature%20Genet.&doi=10.1038%2Fng1760&volume=38&pages=431-440&publication_year=2006&author=Loh%2CYH's total income per month
- How much does https://doi.org/10.1073%2Fpnas.0511041103 net monthly?
- What's the monthly income of http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&bibcode=2006PNAS..103.2422C?
- What's the profit of http://scholar.google.com/scholar_lookup?&title=Reciprocal%20actions%20of%20REST%20and%20a%20microRNA%20promote%20neuronal%20identity&journal=Proc.%20Natl%20Acad.%20Sci.%20USA&doi=10.1073%2Fpnas.0511041103&volume=103&pages=2422-2427&publication_year=2006&author=Conaco%2CC&author=Otto%2CS&author=Han%2CJJ&author=Mandel%2CG?
- How much does https://doi.org/10.1093%2Fbioinformatics%2Fbti473 gross monthly?
- What's http://scholar.google.com/scholar_lookup?&title=MatInspector%20and%20beyond%3A%20promoter%20analysis%20based%20on%20transcription%20factor%20binding%20sites&journal=Bioinformatics&doi=10.1093%2Fbioinformatics%2Fbti473&volume=21&pages=2933-2942&publication_year=2005&author=Cartharius%2CK's gross income?
- How much money does https://doi.org/10.1016%2FS1534-5807%2803%2900227-2 generate?
- What's the monthly money flow for http://scholar.google.com/scholar_lookup?&title=Embryonic%20stem%20cell-specific%20microRNAs&journal=Dev.%20Cell&doi=10.1016%2FS1534-5807%2803%2900227-2&volume=5&pages=351-358&publication_year=2003&author=Houbaviy%2CHB&author=Murray%2CMF&author=Sharp%2CPA?
- How much income is https://doi.org/10.1016%2Fj.cell.2005.08.020 earning monthly?
- http://scholar.google.com/scholar_lookup?&title=Core%20transcriptional%20regulatory%20circuitry%20in%20human%20embryonic%20stem%20cells&journal=Cell&doi=10.1016%2Fj.cell.2005.08.020&volume=122&pages=947-956&publication_year=2005&author=Boyer%2CLA's revenue stream
- How much does https://doi.org/10.1038%2Fnature05284 pull in monthly?
- How much profit does http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&bibcode=2006Natur.444..364W make?
- How much revenue does http://scholar.google.com/scholar_lookup?&title=A%20protein%20interaction%20network%20for%20pluripotency%20of%20embryonic%20stem%20cells&journal=Nature&doi=10.1038%2Fnature05284&volume=444&pages=364-368&publication_year=2006&author=Wang%2CJ produce monthly?
- How much does https://doi.org/10.1073%2Fpnas.0701014104 gross monthly?
- Discover the revenue of http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&bibcode=2007PNAS..10416438Z
- What's http://scholar.google.com/scholar_lookup?&title=A%20gene%20regulatory%20network%20in%20mouse%20embryonic%20stem%20cells&journal=Proc.%20Natl%20Acad.%20Sci.%20USA&doi=10.1073%2Fpnas.0701014104&volume=104&pages=16438-16443&publication_year=2007&author=Zhou%2CQ&author=Chipperfield%2CH&author=Melton%2CDA&author=Wong%2CWH's gross income?
- Learn how profitable http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2129226 is on a monthly basis
- What's the financial intake of http://scholar.google.com/scholar_lookup?&title=Establishment%20of%20germ-line-competent%20embryonic%20stem%20%28ES%29%20cells%20using%20differentiation%20inhibiting%20activity&journal=Development&volume=110&pages=1341-1348&publication_year=1990&author=Nichols%2CJ&author=Evans%2CEP&author=Smith%2CAG?
- Check the income stats for https://doi.org/10.1074%2Fjbc.M504655200
- http://scholar.google.com/scholar_lookup?&title=Family%20members%20p53%20and%20p73%20act%20together%20in%20chromatin%20modification%20and%20direct%20repression%20of%20%CE%B1-fetoprotein%20transcription&journal=J.%20Biol.%20Chem.&doi=10.1074%2Fjbc.M504655200&volume=280&pages=39152-39160&publication_year=2005&author=Cui%2CR income
- How much profit does https://doi.org/10.1038%2Fncb1372 generate?
- Revenue of http://scholar.google.com/scholar_lookup?&title=The%20NuRD%20component%20Mbd3%20is%20required%20for%20pluripotency%20of%20embryonic%20stem%20cells&journal=Nature%20Cell%20Biol.&doi=10.1038%2Fncb1372&volume=8&pages=285-292&publication_year=2006&author=Kaji%2CK
- How much revenue does https://doi.org/10.1634%2Fstemcells.2005-0143 bring in?
- How much revenue does http://scholar.google.com/scholar_lookup?&title=Assessing%20self-renewal%20and%20differentiation%20in%20human%20embryonic%20stem%20cell%20lines&journal=Stem%20Cells&doi=10.1634%2Fstemcells.2005-0143&volume=24&pages=516-530&publication_year=2006&author=Cai%2CJ generate?
- What's the monthly money flow for https://doi.org/10.1038%2Fncb1481?
- How much income is http://scholar.google.com/scholar_lookup?&title=Sall4%20modulates%20embryonic%20stem%20cell%20pluripotency%20and%20early%20embryonic%20development%20by%20the%20transcriptional%20regulation%20of%20Pou5f1&journal=Nature%20Cell%20Biol.&doi=10.1038%2Fncb1481&volume=8&pages=1114-1123&publication_year=2006&author=Zhang%2CJ earning monthly?
- Learn how profitable https://citation-needed.springer.com/v2/references/10.1038/nature06863?format=refman&flavour=references is on a monthly basis
- How much does https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&term=Sanjay%20K.%20Singh make?
- Monthly income for https://scholar.google.co.uk/scholar?as_q=&num=10&btnG=Search+Scholar&as_epq=&as_oq=&as_eq=&as_occt=any&as_sauthors=%22Sanjay%20K.%20Singh%22&as_publication=&as_ylo=&as_yhi=&as_allsubj=all&hl=en
- What's the monthly income of https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&term=Mohamedi%20N.%20Kagalwala?
- What is the monthly revenue of https://scholar.google.co.uk/scholar?as_q=&num=10&btnG=Search+Scholar&as_epq=&as_oq=&as_eq=&as_occt=any&as_sauthors=%22Mohamedi%20N.%20Kagalwala%22&as_publication=&as_ylo=&as_yhi=&as_allsubj=all&hl=en?
- How much does https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&term=Jan%20Parker-Thornburg make?
- How profitable is https://scholar.google.co.uk/scholar?as_q=&num=10&btnG=Search+Scholar&as_epq=&as_oq=&as_eq=&as_occt=any&as_sauthors=%22Jan%20Parker-Thornburg%22&as_publication=&as_ylo=&as_yhi=&as_allsubj=all&hl=en?
- How much profit is https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&term=Henry%20Adams making per month?
- What's the monthly income of https://scholar.google.co.uk/scholar?as_q=&num=10&btnG=Search+Scholar&as_epq=&as_oq=&as_eq=&as_occt=any&as_sauthors=%22Henry%20Adams%22&as_publication=&as_ylo=&as_yhi=&as_allsubj=all&hl=en?
- What are the total earnings of https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&term=Sadhan%20Majumder?
- What are the total earnings of https://scholar.google.co.uk/scholar?as_q=&num=10&btnG=Search+Scholar&as_epq=&as_oq=&as_eq=&as_occt=any&as_sauthors=%22Sadhan%20Majumder%22&as_publication=&as_ylo=&as_yhi=&as_allsubj=all&hl=en?
- What's the monthly money flow for https://static-content.springer.com/esm/art%3A10.1038%2Fnature06863/MediaObjects/41586_2008_BFnature06863_MOESM206_ESM.pdf?
- What's the income of https://s100.copyright.com/AppDispatchServlet?title=REST%20maintains%20self-renewal%20and%20pluripotency%20of%20embryonic%20stem%20cells&author=Sanjay%20K.%20Singh%20et%20al&contentID=10.1038%2Fnature06863©right=Springer%20Nature%20Limited&publication=0028-0836&publicationDate=2008-03-23&publisherName=SpringerNature&orderBeanReset=true?
- What's the monthly money flow for https://citation-needed.springer.com/v2/references/10.1038/nature06863?format=refman&flavour=citation?
- Find out how much https://doi.org/10.1186/s13046-023-02694-1 earns monthly
- How much does https://doi.org/10.1007/s12015-023-10510-8 make?
- How much does https://doi.org/10.1007/s10571-023-01394-w make?
- What's the monthly income of https://doi.org/10.1186/s13041-022-00947-2?
- Income figures for https://doi.org/10.1038/s41416-020-0779-9
- See how much https://www.protocols.io/ makes per month
- See how much https://www.natureindex.com/ makes per month
- How much income does http://www.naturechina.com have?
- How profitable is https://www.natureasia.com/ja-jp?
Analytics and Tracking {📊}
- Google Tag Manager
Libraries {📚}
- Prism.js
- Zoom.js
Emails and Hosting {✉️}
Mail Servers:
- mxa-002c5801.gslb.pphosted.com
- mxb-002c5801.gslb.pphosted.com
Name Servers:
- pdns1.ultradns.net
- pdns2.ultradns.net
- pdns3.ultradns.org
- pdns4.ultradns.org
- pdns5.ultradns.info
- pdns6.ultradns.co.uk
CDN Services {📦}
- Crossref