
NATURE . COM {
}
Title:
Stem cell engraftment at the endosteal niche is specified by the calcium-sensing receptor | Nature
Description:
Haematopoietic stem cells βhomeβ to the bone marrow during embryogenesis and after bone marrow transplants. With the exception of integrins, the molecules that mediate this process are largely unknown. Now Adams et al. have identified another factor essential for homing, a membrane-spanning molecule called calcium-sensing receptor (CaR). Cells lacking CaR divide normally, but the newly formed cells are unable to migrate and home to the bone marrow. This newly recognized participant in the localization and engraftment of stem cells provides a potential target for affecting that process. During mammalian ontogeny, haematopoietic stem cells (HSCs) translocate from the fetal liver to the bone marrow, where haematopoiesis occurs throughout adulthood1. Unique features of bone that contribute to a microenvironmental niche for stem cells might include the known high concentration of calcium ions at the HSC-enriched endosteal surface. Cells respond to extracellular ionic calcium concentrations through the seven-transmembrane-spanning calcium-sensing receptor (CaR), which we identified as being expressed on HSCs. Here we show that, through the CaR, the simple ionic mineral content of the niche may dictate the preferential localization of adult mammalian haematopoiesis in bone. Antenatal mice deficient in CaR had primitive haematopoietic cells in the circulation and spleen, whereas few were found in bone marrow. CaR-/- HSCs from fetal liver were normal in number, in proliferative and differentiative function, and in migration and homing to the bone marrow. Yet they were highly defective in localizing anatomically to the endosteal niche, behaviour that correlated with defective adhesion to the extracellular matrix protein, collagen I. CaR has a function in retaining HSCs in close physical proximity to the endosteal surface and the regulatory niche components associated with it.
Website Age:
30 years and 10 months (reg. 1994-08-11).
Matching Content Categories {π}
- Science
- Education
- Insurance
Content Management System {π}
What CMS is nature.com built with?
Custom-built
No common CMS systems were detected on Nature.com, and no known web development framework was identified.
Traffic Estimate {π}
What is the average monthly size of nature.com audience?
π Monumental Traffic: 20M - 50M visitors per month
Based on our best estimate, this website will receive around 42,554,915 visitors per month in the current month.
check SE Ranking
check Ahrefs
check Similarweb
check Ubersuggest
check Semrush
How Does Nature.com Make Money? {πΈ}
Display Ads {π―}
The website utilizes display ads within its content to generate revenue. Check the next section for further revenue estimates.
Ads are managed by yourbow.com. Particular relationships are as follows:
Direct Advertisers (10)
google.com, pmc.com, doceree.com, yourbow.com, audienciad.com, onlinemediasolutions.com, advibe.media, aps.amazon.com, getmediamx.com, onomagic.comReseller Advertisers (38)
conversantmedia.com, rubiconproject.com, pubmatic.com, appnexus.com, openx.com, smartadserver.com, lijit.com, sharethrough.com, video.unrulymedia.com, google.com, yahoo.com, triplelift.com, onetag.com, sonobi.com, contextweb.com, 33across.com, indexexchange.com, media.net, themediagrid.com, adform.com, richaudience.com, sovrn.com, improvedigital.com, freewheel.tv, smaato.com, yieldmo.com, amxrtb.com, adyoulike.com, adpone.com, criteo.com, smilewanted.com, 152media.info, e-planning.net, smartyads.com, loopme.com, opera.com, mediafuse.com, betweendigital.comHow Much Does Nature.com Make? {π°}
Display Ads {π―}
$536,300 per month
Our estimates place Nature.com's monthly online earnings from display ads at $357,503 to $983,134.
Keywords {π}
article, cells, google, scholar, nature, stem, cas, bone, cell, marrow, car, niche, access, hematopoietic, content, haematopoietic, calciumsensing, receptor, scadden, blood, pubmed, cookies, endosteal, mice, expression, usa, research, privacy, information, adams, extracellular, ads, massachusetts, analysis, data, journal, engraftment, chabner, alley, zbigniew, szczepiorkowski, david, hscs, fetal, calcium, localization, development, mouse, vivo, microenvironment,
Topics {βοΈ}
nature portfolio privacy policy stem cell research permissions reprints transmembrane-spanning calcium-sensing receptor d-galactose-induced aging model advertising nature cell biol nanoparticle research cation-sensing receptor-deficient mice social media nature genet nature med early g1-phase inhibitor extracellular calcium-sensing receptor nature 425 nature 415 nature nature 439 sca-1+lin- cells fractionated lin-c-kit+sca-1+ calcium-sensing receptor gregor membrane biology program personal data dartmouth-hitchcock medical center author correspondence hsc-enriched endosteal surface permissions information hematopoietic stem cells data protection calcium-sensing receptor springerlink instant access haematopoietic stem cells marrow development stem cell lodgment stem cell niches stem cell engraftment extracellular matrix protein bone morphogenetic protein real time pcr primitive haematopoietic cells lin-c-kit+ cell cycle status competing financial interests privacy extracellular calcium elicits cell tissue kinet permissions hematopoietic microenvironment dartmouth medical school
Schema {πΊοΈ}
WebPage:
mainEntity:
headline:Stem cell engraftment at the endosteal niche is specified by the calcium-sensing receptor
description:Haematopoietic stem cells Γ’ΒΒhomeΓ’ΒΒ to the bone marrow during embryogenesis and after bone marrow transplants. With the exception of integrins, the molecules that mediate this process are largely unknown. Now Adams et al. have identified another factor essential for homing, a membrane-spanning molecule called calcium-sensing receptor (CaR). Cells lacking CaR divide normally, but the newly formed cells are unable to migrate and home to the bone marrow. This newly recognized participant in the localization and engraftment of stem cells provides a potential target for affecting that process. During mammalian ontogeny, haematopoietic stem cells (HSCs) translocate from the fetal liver to the bone marrow, where haematopoiesis occurs throughout adulthood1. Unique features of bone that contribute to a microenvironmental niche for stem cells might include the known high concentration of calcium ions at the HSC-enriched endosteal surface. Cells respond to extracellular ionic calcium concentrations through the seven-transmembrane-spanning calcium-sensing receptor (CaR), which we identified as being expressed on HSCs. Here we show that, through the CaR, the simple ionic mineral content of the niche may dictate the preferential localization of adult mammalian haematopoiesis in bone. Antenatal mice deficient in CaR had primitive haematopoietic cells in the circulation and spleen, whereas few were found in bone marrow. CaR-/- HSCs from fetal liver were normal in number, in proliferative and differentiative function, and in migration and homing to the bone marrow. Yet they were highly defective in localizing anatomically to the endosteal niche, behaviour that correlated with defective adhesion to the extracellular matrix protein, collagen I. CaR has a function in retaining HSCs in close physical proximity to the endosteal surface and the regulatory niche components associated with it.
datePublished:2005-12-28T00:00:00Z
dateModified:2005-12-28T00:00:00Z
pageStart:599
pageEnd:603
sameAs:https://doi.org/10.1038/nature04247
keywords:
Science
Humanities and Social Sciences
multidisciplinary
image:
https://media.springernature.com/lw1200/springer-static/image/art%3A10.1038%2Fnature04247/MediaObjects/41586_2006_Article_BFnature04247_Fig1_HTML.jpg
https://media.springernature.com/lw1200/springer-static/image/art%3A10.1038%2Fnature04247/MediaObjects/41586_2006_Article_BFnature04247_Fig2_HTML.jpg
https://media.springernature.com/lw1200/springer-static/image/art%3A10.1038%2Fnature04247/MediaObjects/41586_2006_Article_BFnature04247_Fig3_HTML.jpg
https://media.springernature.com/lw1200/springer-static/image/art%3A10.1038%2Fnature04247/MediaObjects/41586_2006_Article_BFnature04247_Fig4_HTML.jpg
isPartOf:
name:Nature
issn:
1476-4687
0028-0836
volumeNumber:439
type:
Periodical
PublicationVolume
publisher:
name:Nature Publishing Group UK
logo:
url:https://www.springernature.com/app-sn/public/images/logo-springernature.png
type:ImageObject
type:Organization
author:
name:Gregor B. Adams
affiliation:
name:Center for Regenerative Medicine
address:
name:Center for Regenerative Medicine,
type:PostalAddress
type:Organization
name:Harvard University
address:
name:Harvard Stem Cell Institute, Harvard University, Cambridge, USA
type:PostalAddress
type:Organization
type:Person
name:Karissa T. Chabner
affiliation:
name:Center for Regenerative Medicine
address:
name:Center for Regenerative Medicine,
type:PostalAddress
type:Organization
name:Harvard University
address:
name:Harvard Stem Cell Institute, Harvard University, Cambridge, USA
type:PostalAddress
type:Organization
type:Person
name:Ian R. Alley
affiliation:
name:Center for Regenerative Medicine
address:
name:Center for Regenerative Medicine,
type:PostalAddress
type:Organization
name:Harvard University
address:
name:Harvard Stem Cell Institute, Harvard University, Cambridge, USA
type:PostalAddress
type:Organization
type:Person
name:Douglas P. Olson
affiliation:
name:Center for Regenerative Medicine
address:
name:Center for Regenerative Medicine,
type:PostalAddress
type:Organization
type:Person
name:Zbigniew M. Szczepiorkowski
affiliation:
name:Center for Regenerative Medicine
address:
name:Center for Regenerative Medicine,
type:PostalAddress
type:Organization
name:Massachusetts General Hospital, Harvard Medical School
address:
name:Blood Transfusion Service, Massachusetts General Hospital, Harvard Medical School, Boston, USA
type:PostalAddress
type:Organization
name:Dartmouth Medical School
address:
name:Department of Pathology, Dartmouth-Hitchcock Medical Center, Dartmouth Medical School, Lebanon, USA
type:PostalAddress
type:Organization
type:Person
name:Mark C. Poznansky
affiliation:
name:Center for Regenerative Medicine
address:
name:Center for Regenerative Medicine,
type:PostalAddress
type:Organization
type:Person
name:Claudine H. Kos
affiliation:
name:Renal Division
address:
name:Renal Division, Boston, USA
type:PostalAddress
type:Organization
type:Person
name:Martin R. Pollak
affiliation:
name:Renal Division
address:
name:Renal Division, Boston, USA
type:PostalAddress
type:Organization
type:Person
name:Edward M. Brown
affiliation:
name:Brigham and Women's Hospital, Harvard Medical School
address:
name:Endocrine-Hypertension Division, Membrane Biology Program, Brigham and Women's Hospital, Harvard Medical School, Boston, USA
type:PostalAddress
type:Organization
type:Person
name:David T. Scadden
affiliation:
name:Center for Regenerative Medicine
address:
name:Center for Regenerative Medicine,
type:PostalAddress
type:Organization
name:Harvard University
address:
name:Harvard Stem Cell Institute, Harvard University, Cambridge, USA
type:PostalAddress
type:Organization
email:[email protected]
type:Person
isAccessibleForFree:
hasPart:
isAccessibleForFree:
cssSelector:.main-content
type:WebPageElement
type:ScholarlyArticle
context:https://schema.org
ScholarlyArticle:
headline:Stem cell engraftment at the endosteal niche is specified by the calcium-sensing receptor
description:Haematopoietic stem cells Γ’ΒΒhomeΓ’ΒΒ to the bone marrow during embryogenesis and after bone marrow transplants. With the exception of integrins, the molecules that mediate this process are largely unknown. Now Adams et al. have identified another factor essential for homing, a membrane-spanning molecule called calcium-sensing receptor (CaR). Cells lacking CaR divide normally, but the newly formed cells are unable to migrate and home to the bone marrow. This newly recognized participant in the localization and engraftment of stem cells provides a potential target for affecting that process. During mammalian ontogeny, haematopoietic stem cells (HSCs) translocate from the fetal liver to the bone marrow, where haematopoiesis occurs throughout adulthood1. Unique features of bone that contribute to a microenvironmental niche for stem cells might include the known high concentration of calcium ions at the HSC-enriched endosteal surface. Cells respond to extracellular ionic calcium concentrations through the seven-transmembrane-spanning calcium-sensing receptor (CaR), which we identified as being expressed on HSCs. Here we show that, through the CaR, the simple ionic mineral content of the niche may dictate the preferential localization of adult mammalian haematopoiesis in bone. Antenatal mice deficient in CaR had primitive haematopoietic cells in the circulation and spleen, whereas few were found in bone marrow. CaR-/- HSCs from fetal liver were normal in number, in proliferative and differentiative function, and in migration and homing to the bone marrow. Yet they were highly defective in localizing anatomically to the endosteal niche, behaviour that correlated with defective adhesion to the extracellular matrix protein, collagen I. CaR has a function in retaining HSCs in close physical proximity to the endosteal surface and the regulatory niche components associated with it.
datePublished:2005-12-28T00:00:00Z
dateModified:2005-12-28T00:00:00Z
pageStart:599
pageEnd:603
sameAs:https://doi.org/10.1038/nature04247
keywords:
Science
Humanities and Social Sciences
multidisciplinary
image:
https://media.springernature.com/lw1200/springer-static/image/art%3A10.1038%2Fnature04247/MediaObjects/41586_2006_Article_BFnature04247_Fig1_HTML.jpg
https://media.springernature.com/lw1200/springer-static/image/art%3A10.1038%2Fnature04247/MediaObjects/41586_2006_Article_BFnature04247_Fig2_HTML.jpg
https://media.springernature.com/lw1200/springer-static/image/art%3A10.1038%2Fnature04247/MediaObjects/41586_2006_Article_BFnature04247_Fig3_HTML.jpg
https://media.springernature.com/lw1200/springer-static/image/art%3A10.1038%2Fnature04247/MediaObjects/41586_2006_Article_BFnature04247_Fig4_HTML.jpg
isPartOf:
name:Nature
issn:
1476-4687
0028-0836
volumeNumber:439
type:
Periodical
PublicationVolume
publisher:
name:Nature Publishing Group UK
logo:
url:https://www.springernature.com/app-sn/public/images/logo-springernature.png
type:ImageObject
type:Organization
author:
name:Gregor B. Adams
affiliation:
name:Center for Regenerative Medicine
address:
name:Center for Regenerative Medicine,
type:PostalAddress
type:Organization
name:Harvard University
address:
name:Harvard Stem Cell Institute, Harvard University, Cambridge, USA
type:PostalAddress
type:Organization
type:Person
name:Karissa T. Chabner
affiliation:
name:Center for Regenerative Medicine
address:
name:Center for Regenerative Medicine,
type:PostalAddress
type:Organization
name:Harvard University
address:
name:Harvard Stem Cell Institute, Harvard University, Cambridge, USA
type:PostalAddress
type:Organization
type:Person
name:Ian R. Alley
affiliation:
name:Center for Regenerative Medicine
address:
name:Center for Regenerative Medicine,
type:PostalAddress
type:Organization
name:Harvard University
address:
name:Harvard Stem Cell Institute, Harvard University, Cambridge, USA
type:PostalAddress
type:Organization
type:Person
name:Douglas P. Olson
affiliation:
name:Center for Regenerative Medicine
address:
name:Center for Regenerative Medicine,
type:PostalAddress
type:Organization
type:Person
name:Zbigniew M. Szczepiorkowski
affiliation:
name:Center for Regenerative Medicine
address:
name:Center for Regenerative Medicine,
type:PostalAddress
type:Organization
name:Massachusetts General Hospital, Harvard Medical School
address:
name:Blood Transfusion Service, Massachusetts General Hospital, Harvard Medical School, Boston, USA
type:PostalAddress
type:Organization
name:Dartmouth Medical School
address:
name:Department of Pathology, Dartmouth-Hitchcock Medical Center, Dartmouth Medical School, Lebanon, USA
type:PostalAddress
type:Organization
type:Person
name:Mark C. Poznansky
affiliation:
name:Center for Regenerative Medicine
address:
name:Center for Regenerative Medicine,
type:PostalAddress
type:Organization
type:Person
name:Claudine H. Kos
affiliation:
name:Renal Division
address:
name:Renal Division, Boston, USA
type:PostalAddress
type:Organization
type:Person
name:Martin R. Pollak
affiliation:
name:Renal Division
address:
name:Renal Division, Boston, USA
type:PostalAddress
type:Organization
type:Person
name:Edward M. Brown
affiliation:
name:Brigham and Women's Hospital, Harvard Medical School
address:
name:Endocrine-Hypertension Division, Membrane Biology Program, Brigham and Women's Hospital, Harvard Medical School, Boston, USA
type:PostalAddress
type:Organization
type:Person
name:David T. Scadden
affiliation:
name:Center for Regenerative Medicine
address:
name:Center for Regenerative Medicine,
type:PostalAddress
type:Organization
name:Harvard University
address:
name:Harvard Stem Cell Institute, Harvard University, Cambridge, USA
type:PostalAddress
type:Organization
email:[email protected]
type:Person
isAccessibleForFree:
hasPart:
isAccessibleForFree:
cssSelector:.main-content
type:WebPageElement
["Periodical","PublicationVolume"]:
name:Nature
issn:
1476-4687
0028-0836
volumeNumber:439
Organization:
name:Nature Publishing Group UK
logo:
url:https://www.springernature.com/app-sn/public/images/logo-springernature.png
type:ImageObject
name:Center for Regenerative Medicine
address:
name:Center for Regenerative Medicine,
type:PostalAddress
name:Harvard University
address:
name:Harvard Stem Cell Institute, Harvard University, Cambridge, USA
type:PostalAddress
name:Center for Regenerative Medicine
address:
name:Center for Regenerative Medicine,
type:PostalAddress
name:Harvard University
address:
name:Harvard Stem Cell Institute, Harvard University, Cambridge, USA
type:PostalAddress
name:Center for Regenerative Medicine
address:
name:Center for Regenerative Medicine,
type:PostalAddress
name:Harvard University
address:
name:Harvard Stem Cell Institute, Harvard University, Cambridge, USA
type:PostalAddress
name:Center for Regenerative Medicine
address:
name:Center for Regenerative Medicine,
type:PostalAddress
name:Center for Regenerative Medicine
address:
name:Center for Regenerative Medicine,
type:PostalAddress
name:Massachusetts General Hospital, Harvard Medical School
address:
name:Blood Transfusion Service, Massachusetts General Hospital, Harvard Medical School, Boston, USA
type:PostalAddress
name:Dartmouth Medical School
address:
name:Department of Pathology, Dartmouth-Hitchcock Medical Center, Dartmouth Medical School, Lebanon, USA
type:PostalAddress
name:Center for Regenerative Medicine
address:
name:Center for Regenerative Medicine,
type:PostalAddress
name:Renal Division
address:
name:Renal Division, Boston, USA
type:PostalAddress
name:Renal Division
address:
name:Renal Division, Boston, USA
type:PostalAddress
name:Brigham and Women's Hospital, Harvard Medical School
address:
name:Endocrine-Hypertension Division, Membrane Biology Program, Brigham and Women's Hospital, Harvard Medical School, Boston, USA
type:PostalAddress
name:Center for Regenerative Medicine
address:
name:Center for Regenerative Medicine,
type:PostalAddress
name:Harvard University
address:
name:Harvard Stem Cell Institute, Harvard University, Cambridge, USA
type:PostalAddress
ImageObject:
url:https://www.springernature.com/app-sn/public/images/logo-springernature.png
Person:
name:Gregor B. Adams
affiliation:
name:Center for Regenerative Medicine
address:
name:Center for Regenerative Medicine,
type:PostalAddress
type:Organization
name:Harvard University
address:
name:Harvard Stem Cell Institute, Harvard University, Cambridge, USA
type:PostalAddress
type:Organization
name:Karissa T. Chabner
affiliation:
name:Center for Regenerative Medicine
address:
name:Center for Regenerative Medicine,
type:PostalAddress
type:Organization
name:Harvard University
address:
name:Harvard Stem Cell Institute, Harvard University, Cambridge, USA
type:PostalAddress
type:Organization
name:Ian R. Alley
affiliation:
name:Center for Regenerative Medicine
address:
name:Center for Regenerative Medicine,
type:PostalAddress
type:Organization
name:Harvard University
address:
name:Harvard Stem Cell Institute, Harvard University, Cambridge, USA
type:PostalAddress
type:Organization
name:Douglas P. Olson
affiliation:
name:Center for Regenerative Medicine
address:
name:Center for Regenerative Medicine,
type:PostalAddress
type:Organization
name:Zbigniew M. Szczepiorkowski
affiliation:
name:Center for Regenerative Medicine
address:
name:Center for Regenerative Medicine,
type:PostalAddress
type:Organization
name:Massachusetts General Hospital, Harvard Medical School
address:
name:Blood Transfusion Service, Massachusetts General Hospital, Harvard Medical School, Boston, USA
type:PostalAddress
type:Organization
name:Dartmouth Medical School
address:
name:Department of Pathology, Dartmouth-Hitchcock Medical Center, Dartmouth Medical School, Lebanon, USA
type:PostalAddress
type:Organization
name:Mark C. Poznansky
affiliation:
name:Center for Regenerative Medicine
address:
name:Center for Regenerative Medicine,
type:PostalAddress
type:Organization
name:Claudine H. Kos
affiliation:
name:Renal Division
address:
name:Renal Division, Boston, USA
type:PostalAddress
type:Organization
name:Martin R. Pollak
affiliation:
name:Renal Division
address:
name:Renal Division, Boston, USA
type:PostalAddress
type:Organization
name:Edward M. Brown
affiliation:
name:Brigham and Women's Hospital, Harvard Medical School
address:
name:Endocrine-Hypertension Division, Membrane Biology Program, Brigham and Women's Hospital, Harvard Medical School, Boston, USA
type:PostalAddress
type:Organization
name:David T. Scadden
affiliation:
name:Center for Regenerative Medicine
address:
name:Center for Regenerative Medicine,
type:PostalAddress
type:Organization
name:Harvard University
address:
name:Harvard Stem Cell Institute, Harvard University, Cambridge, USA
type:PostalAddress
type:Organization
email:[email protected]
PostalAddress:
name:Center for Regenerative Medicine,
name:Harvard Stem Cell Institute, Harvard University, Cambridge, USA
name:Center for Regenerative Medicine,
name:Harvard Stem Cell Institute, Harvard University, Cambridge, USA
name:Center for Regenerative Medicine,
name:Harvard Stem Cell Institute, Harvard University, Cambridge, USA
name:Center for Regenerative Medicine,
name:Center for Regenerative Medicine,
name:Blood Transfusion Service, Massachusetts General Hospital, Harvard Medical School, Boston, USA
name:Department of Pathology, Dartmouth-Hitchcock Medical Center, Dartmouth Medical School, Lebanon, USA
name:Center for Regenerative Medicine,
name:Renal Division, Boston, USA
name:Renal Division, Boston, USA
name:Endocrine-Hypertension Division, Membrane Biology Program, Brigham and Women's Hospital, Harvard Medical School, Boston, USA
name:Center for Regenerative Medicine,
name:Harvard Stem Cell Institute, Harvard University, Cambridge, USA
WebPageElement:
isAccessibleForFree:
cssSelector:.main-content
External Links {π}(90)
- What's the financial outcome of https://link.springer.com/article/10.1038/nature04247?utm_source=nature&utm_medium=referral&utm_campaign=buyArticle?
- Find out how much http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1912596 earns monthly
- How much does http://scholar.google.com/scholar_lookup?&title=Embryonic%20and%20fetal%20hemopoiesis%3A%20an%20overview&journal=Blood%20Cells&volume=17&pages=269-281&publication_year=1991&author=Tavassoli%2CM earn?
- What's the income generated by http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1131427 each month?
- How much does http://scholar.google.com/scholar_lookup?&title=The%20relative%20spatial%20distributions%20of%20CFUs%20and%20CFUc%20in%20the%20normal%20mouse%20femur&journal=Blood&volume=46&pages=65-72&publication_year=1975&author=Lord%2CBI&author=Testa%2CNG&author=Hendry%2CJH pull in monthly?
- What's the income generated by https://doi.org/10.1126%2Fscience.75570 each month?
- http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&bibcode=1978Sci...199.1443G's revenue stream
- See how much http://scholar.google.com/scholar_lookup?&title=Endosteal%20marrow%3A%20a%20rich%20source%20of%20hematopoietic%20stem%20cells&journal=Science&doi=10.1126%2Fscience.75570&volume=199&pages=1443-1445&publication_year=1978&author=Gong%2CJK makes per month
- What's the monthly income of https://doi.org/10.1182%2Fblood.V97.8.2293?
- How much does http://scholar.google.com/scholar_lookup?&title=Spatial%20localization%20of%20transplanted%20hemopoietic%20stem%20cells%3A%20inferences%20for%20the%20localization%20of%20stem%20cell%20niches&journal=Blood&doi=10.1182%2Fblood.V97.8.2293&volume=97&pages=2293-2299&publication_year=2001&author=Nilsson%2CSK&author=Johnston%2CHM&author=Coverdale%2CJA make?
- How much profit is https://doi.org/10.1016%2FS8756-3282%2895%2900264-2 making per month?
- How much does http://scholar.google.com/scholar_lookup?&title=Marrow%20development%20and%20its%20relationship%20to%20bone%20formation%20in%20vivo%3A%20a%20histological%20study%20using%20an%20implantable%20titanium%20device%20in%20rabbits&journal=Bone&doi=10.1016%2FS8756-3282%2895%2900264-2&volume=17&pages=407-415&publication_year=1995&author=Zhou%2CH pull in monthly?
- How much does https://doi.org/10.1006%2Fbbrc.1999.0163 pull in monthly?
- What's the total monthly financial gain of http://scholar.google.com/scholar_lookup?&title=Excessive%20extramedullary%20hematopoiesis%20in%20Cbfa1-deficient%20mice%20with%20a%20congenital%20lack%20of%20bone%20marrow&journal=Biochem.%20Biophys.%20Res.%20Commun.&doi=10.1006%2Fbbrc.1999.0163&volume=255&pages=352-359&publication_year=1999&author=Deguchi%2CK?
- How much does https://doi.org/10.1016%2FS0002-9440%2810%2961152-2 bring in each month?
- Learn how profitable http://scholar.google.com/scholar_lookup?&title=Linking%20hematopoiesis%20to%20endochondral%20skeletogenesis%20through%20analysis%20of%20mice%20transgenic%20for%20collagen%20X&journal=Am.%20J.%20Pathol.&doi=10.1016%2FS0002-9440%2810%2961152-2&volume=160&pages=2019-2034&publication_year=2002&author=Jacenko%2CO is on a monthly basis
- Income figures for https://doi.org/10.1038%2Fnature02040
- Financial intake of http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&bibcode=2003Natur.425..841C
- How much does http://scholar.google.com/scholar_lookup?&title=Osteoblastic%20cells%20regulate%20the%20haematopoietic%20stem%20cell%20niche&journal=Nature&doi=10.1038%2Fnature02040&volume=425&pages=841-846&publication_year=2003&author=Calvi%2CLM make?
- How much money does https://doi.org/10.1038%2Fnature02041 make?
- http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&bibcode=2003Natur.425..836Z's total income per month
- http://scholar.google.com/scholar_lookup?&title=Identification%20of%20the%20haematopoietic%20stem%20cell%20niche%20and%20control%20of%20the%20niche%20size&journal=Nature&doi=10.1038%2Fnature02041&volume=415&pages=836-841&publication_year=2003&author=Zhang%2CJ income
- What's the monthly income of https://doi.org/10.1016%2F0014-4827%2888%2990191-7?
- How much profit does http://scholar.google.com/scholar_lookup?&title=Microelectrode%20studies%20on%20the%20acid%20microenvironment%20beneath%20adherent%20macrophages%20and%20osteoclasts&journal=Exp.%20Cell%20Res.&doi=10.1016%2F0014-4827%2888%2990191-7&volume=175&pages=266-276&publication_year=1988&author=Silver%2CIA&author=Murrills%2CRJ&author=Etherington%2CDJ make?
- What are the total earnings of http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9377470?
- What's the income generated by http://scholar.google.com/scholar_lookup?&title=Calcium-sensing%20receptor%3A%20roles%20in%20and%20beyond%20systemic%20calcium%20homeostasis&journal=Biol.%20Chem.&volume=378&pages=759-768&publication_year=1997&author=Chattopadhyay%2CN&author=Vassilev%2CPM&author=Brown%2CEM each month?
- Financial intake of https://doi.org/10.1359%2Fjbmr.1997.12.12.1959
- What's the monthly income of http://scholar.google.com/scholar_lookup?&title=Expression%20of%20an%20extracellular%20calcium-sensing%20receptor%20in%20human%20and%20mouse%20bone%20marrow%20cells&journal=J.%20Bone%20Miner.%20Res.&doi=10.1359%2Fjbmr.1997.12.12.1959&volume=12&pages=1959-1970&publication_year=1997&author=House%2CMG?
- How profitable is https://doi.org/10.1172%2FJCI9799?
- What is the earnings of http://scholar.google.com/scholar_lookup?&title=Extracellular%20calcium%20elicits%20a%20chemokinetic%20response%20from%20monocytes%20in%20vitro%20and%20in%20vivo&journal=J.%20Clin.%20Invest.&doi=10.1172%2FJCI9799&volume=105&pages=1299-1305&publication_year=2000&author=Olszak%2CIT?
- What's the profit of https://doi.org/10.1038%2Fng1295-389?
- What's the income generated by http://scholar.google.com/scholar_lookup?&title=A%20mouse%20model%20of%20human%20familial%20hypocalciuric%20hypercalcemia%20and%20neonatal%20severe%20hyperparathyroidism&journal=Nature%20Genet.&doi=10.1038%2Fng1295-389&volume=11&pages=389-394&publication_year=1995&author=Ho%2CC each month?
- Check the income stats for https://doi.org/10.1210%2Fendo.142.9.8364
- What's the financial gain of http://scholar.google.com/scholar_lookup?&title=Rickets%20in%20cation-sensing%20receptor-deficient%20mice%3A%20an%20unexpected%20skeletal%20phenotype&journal=Endocrinology&doi=10.1210%2Fendo.142.9.8364&volume=142&pages=3996-4005&publication_year=2001&author=Garner%2CSC&author=Pi%2CM&author=Tu%2CQ&author=Quarles%2CLD?
- What's the financial outcome of https://doi.org/10.1073%2Fpnas.87.9.3584?
- Financial intake of http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&bibcode=1990PNAS...87.3584S
- How much does http://scholar.google.com/scholar_lookup?&title=Functional%20characterization%20of%20individual%20human%20hematopoietic%20stem%20cells%20cultured%20at%20limiting%20dilution%20on%20supportive%20marrow%20stromal%20layers&journal=Proc.%20Natl%20Acad.%20Sci.%20USA&doi=10.1073%2Fpnas.87.9.3584&volume=87&pages=3584-3588&publication_year=1990&author=Sutherland%2CHJ&author=Lansdorp%2CPM&author=Henkelman%2CD&author=Eaves%2CAC&author=Eaves%2CCJ bring in each month?
- How much revenue does https://doi.org/10.1038%2Fncb1126 produce monthly?
- How much income does http://scholar.google.com/scholar_lookup?&title=In%20vivo%20self-renewing%20divisions%20of%20haematopoietic%20stem%20cells%20are%20increased%20in%20the%20absence%20of%20the%20early%20G1-phase%20inhibitor%2C%20p18INK4C&journal=Nature%20Cell%20Biol.&doi=10.1038%2Fncb1126&volume=6&pages=436-442&publication_year=2004&author=Yuan%2CY&author=Shen%2CH&author=Franklin%2CDS&author=Scadden%2CDT&author=Cheng%2CT have?
- What's the monthly money flow for https://doi.org/10.1126%2Fscience.287.5459.1804?
- Learn about the earnings of http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&bibcode=2000Sci...287.1804C
- What's the financial intake of http://scholar.google.com/scholar_lookup?&title=Hematopoietic%20stem%20cell%20quiescence%20maintained%20by%20p21cip1%2Fwaf1&journal=Science&doi=10.1126%2Fscience.287.5459.1804&volume=287&pages=1804-1808&publication_year=2000&author=Cheng%2CT?
- What's the financial gain of https://doi.org/10.1038%2F81335?
- How profitable is http://scholar.google.com/scholar_lookup?&title=Stem%20cell%20repopulation%20efficiency%20but%20not%20pool%20size%20is%20governed%20by%20p27kip1&journal=Nature%20Med.&doi=10.1038%2F81335&volume=6&pages=1235-1240&publication_year=2000&author=Cheng%2CT&author=Rodrigues%2CN&author=Dombkowski%2CD&author=Stier%2CS&author=Scadden%2CDT?
- Learn about the earnings of http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10942381
- Income figures for http://scholar.google.com/scholar_lookup?&title=Homing%20and%20engraftment%20potential%20of%20Sca-1%2Blin-%20cells%20fractionated%20on%20the%20basis%20of%20adhesion%20molecule%20expression%20and%20position%20in%20cell%20cycle&journal=Blood&volume=96&pages=1380-1387&publication_year=2000&author=Orschell-Traycoff%2CCM
- What's the income generated by http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=4589694 each month?
- How much does http://scholar.google.com/scholar_lookup?&title=Dissecting%20the%20hematopoietic%20microenvironment.%20I.%20Stem%20cell%20lodgment%20and%20commitment%2C%20and%20the%20proliferation%20and%20differentiation%20of%20erythropoietic%20descendants%20in%20the%20Sl%2FSld%20mouse&journal=Cell%20Tissue%20Kinet.&volume=7&pages=89-98&publication_year=1974&author=Wolf%2CNS pull in?
- What's the financial outcome of https://doi.org/10.1177%2F002215549804600311?
- Learn how profitable http://scholar.google.com/scholar_lookup?&title=Immunofluorescence%20charaterization%20of%20key%20extracellular%20matrix%20proteins%20in%20murine%20bone%20marrow%20in%20situ&journal=J.%20Histochem.%20Cytochem.&doi=10.1177%2F002215549804600311&volume=46&pages=371-377&publication_year=1998&author=Nilsson%2CSK is on a monthly basis
- http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7994060's revenue stream
- What's the financial outcome of http://scholar.google.com/scholar_lookup?&title=Development%20of%20hemopoietic%20bone%20marrow%20within%20the%20ectopic%20bone%20induced%20by%20bone%20morphogenetic%20protein&journal=Blood%20Cells&volume=20&pages=191-199&publication_year=1994&author=Kawai%2CM?
- How much cash flow does http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8647226 have monthly?
- What's http://scholar.google.com/scholar_lookup?&title=Recombinant%20human%20bone%20morphogenetic%20protein-2%20induces%20a%20hematopoietic%20microenvironment%20in%20the%20rat%20that%20supports%20the%20growth%20of%20stem%20cells&journal=Exp.%20Hematol.&volume=24&pages=768-775&publication_year=1996&author=An%2CJ&author=Rosen%2CV&author=Cox%2CK&author=Beauchemin%2CN&author=Sullivan%2CAK's gross income?
- How much does https://doi.org/10.1182%2Fblood.V99.7.2369 generate monthly?
- How much income does http://scholar.google.com/scholar_lookup?&title=Notch1%20activation%20increases%20hematopoietic%20stem%20cell%20self-renewal%20in%20vivo%20and%20favors%20lymphoid%20over%20myeloid%20lineage%20outcome&journal=Blood&doi=10.1182%2Fblood.V99.7.2369&volume=99&pages=2369-2378&publication_year=2002&author=Stier%2CS&author=Cheng%2CT&author=Dombkowski%2CD&author=Carlesso%2CN&author=Scadden%2CDT have?
- What are the total earnings of https://citation-needed.springer.com/v2/references/10.1038/nature04247?format=refman&flavour=references?
- How much does https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&term=Gregor%20B.%20Adams pull in monthly?
- What is the earnings of https://scholar.google.co.uk/scholar?as_q=&num=10&btnG=Search+Scholar&as_epq=&as_oq=&as_eq=&as_occt=any&as_sauthors=%22Gregor%20B.%20Adams%22&as_publication=&as_ylo=&as_yhi=&as_allsubj=all&hl=en?
- Get to know what's the income of https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&term=Karissa%20T.%20Chabner
- Learn how profitable https://scholar.google.co.uk/scholar?as_q=&num=10&btnG=Search+Scholar&as_epq=&as_oq=&as_eq=&as_occt=any&as_sauthors=%22Karissa%20T.%20Chabner%22&as_publication=&as_ylo=&as_yhi=&as_allsubj=all&hl=en is on a monthly basis
- Profit of https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&term=Ian%20R.%20Alley
- How much does https://scholar.google.co.uk/scholar?as_q=&num=10&btnG=Search+Scholar&as_epq=&as_oq=&as_eq=&as_occt=any&as_sauthors=%22Ian%20R.%20Alley%22&as_publication=&as_ylo=&as_yhi=&as_allsubj=all&hl=en make?
- How much income is https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&term=Douglas%20P.%20Olson earning monthly?
- What's the revenue for https://scholar.google.co.uk/scholar?as_q=&num=10&btnG=Search+Scholar&as_epq=&as_oq=&as_eq=&as_occt=any&as_sauthors=%22Douglas%20P.%20Olson%22&as_publication=&as_ylo=&as_yhi=&as_allsubj=all&hl=en?
- Get to know https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&term=Zbigniew%20M.%20Szczepiorkowski's earnings
- How much does https://scholar.google.co.uk/scholar?as_q=&num=10&btnG=Search+Scholar&as_epq=&as_oq=&as_eq=&as_occt=any&as_sauthors=%22Zbigniew%20M.%20Szczepiorkowski%22&as_publication=&as_ylo=&as_yhi=&as_allsubj=all&hl=en pull in monthly?
- How profitable is https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&term=Mark%20C.%20Poznansky?
- How much does https://scholar.google.co.uk/scholar?as_q=&num=10&btnG=Search+Scholar&as_epq=&as_oq=&as_eq=&as_occt=any&as_sauthors=%22Mark%20C.%20Poznansky%22&as_publication=&as_ylo=&as_yhi=&as_allsubj=all&hl=en pull in?
- See how much https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&term=Claudine%20H.%20Kos makes per month
- How much profit is https://scholar.google.co.uk/scholar?as_q=&num=10&btnG=Search+Scholar&as_epq=&as_oq=&as_eq=&as_occt=any&as_sauthors=%22Claudine%20H.%20Kos%22&as_publication=&as_ylo=&as_yhi=&as_allsubj=all&hl=en making per month?
- What's the total monthly financial gain of https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&term=Martin%20R.%20Pollak?
- How much does https://scholar.google.co.uk/scholar?as_q=&num=10&btnG=Search+Scholar&as_epq=&as_oq=&as_eq=&as_occt=any&as_sauthors=%22Martin%20R.%20Pollak%22&as_publication=&as_ylo=&as_yhi=&as_allsubj=all&hl=en net monthly?
- How much money does https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&term=Edward%20M.%20Brown make?
- Explore the financials of https://scholar.google.co.uk/scholar?as_q=&num=10&btnG=Search+Scholar&as_epq=&as_oq=&as_eq=&as_occt=any&as_sauthors=%22Edward%20M.%20Brown%22&as_publication=&as_ylo=&as_yhi=&as_allsubj=all&hl=en
- How much cash flow does https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&term=David%20T.%20Scadden have monthly?
- How much does https://scholar.google.co.uk/scholar?as_q=&num=10&btnG=Search+Scholar&as_epq=&as_oq=&as_eq=&as_occt=any&as_sauthors=%22David%20T.%20Scadden%22&as_publication=&as_ylo=&as_yhi=&as_allsubj=all&hl=en make?
- Check the income stats for https://static-content.springer.com/esm/art%3A10.1038%2Fnature04247/MediaObjects/41586_2006_BFnature04247_MOESM1_ESM.pdf
- How much revenue does https://static-content.springer.com/esm/art%3A10.1038%2Fnature04247/MediaObjects/41586_2006_BFnature04247_MOESM2_ESM.pdf generate?
- How profitable is https://s100.copyright.com/AppDispatchServlet?title=Stem%20cell%20engraftment%20at%20the%20endosteal%20niche%20is%20specified%20by%20the%20calcium-sensing%20receptor&author=Gregor%20B.%20Adams%20et%20al&contentID=10.1038%2Fnature04247©right=Springer%20Nature%20Limited&publication=0028-0836&publicationDate=2005-12-28&publisherName=SpringerNature&orderBeanReset=true?
- Find out how much https://citation-needed.springer.com/v2/references/10.1038/nature04247?format=refman&flavour=citation earns monthly
- How much revenue does https://doi.org/10.1038/s41413-023-00249-w bring in?
- How much income is https://doi.org/10.1038/s41467-023-41770-0 earning monthly?
- What are the total earnings of https://doi.org/10.1007/s00109-023-02315-6?
- Earnings of https://doi.org/10.1007/s11033-022-07898-w
- How much does https://doi.org/10.1007/s11051-022-05654-6 earn?
- How much income is https://www.protocols.io/ earning monthly?
- How much profit does https://www.natureindex.com/ generate?
- What's the monthly money flow for http://www.naturechina.com?
- Financial intake of https://www.natureasia.com/ja-jp
Analytics and Tracking {π}
- Google Tag Manager
Libraries {π}
- Prism.js
- Zoom.js
Emails and Hosting {βοΈ}
Mail Servers:
- mxa-002c5801.gslb.pphosted.com
- mxb-002c5801.gslb.pphosted.com
Name Servers:
- pdns1.ultradns.net
- pdns2.ultradns.net
- pdns3.ultradns.org
- pdns4.ultradns.org
- pdns5.ultradns.info
- pdns6.ultradns.co.uk
CDN Services {π¦}
- Crossref