
NATURE . COM {
}
Title:
Stem cell engraftment at the endosteal niche is specified by the calcium-sensing receptor | Nature
Description:
Haematopoietic stem cells βhomeβ to the bone marrow during embryogenesis and after bone marrow transplants. With the exception of integrins, the molecules that mediate this process are largely unknown. Now Adams et al. have identified another factor essential for homing, a membrane-spanning molecule called calcium-sensing receptor (CaR). Cells lacking CaR divide normally, but the newly formed cells are unable to migrate and home to the bone marrow. This newly recognized participant in the localization and engraftment of stem cells provides a potential target for affecting that process. During mammalian ontogeny, haematopoietic stem cells (HSCs) translocate from the fetal liver to the bone marrow, where haematopoiesis occurs throughout adulthood1. Unique features of bone that contribute to a microenvironmental niche for stem cells might include the known high concentration of calcium ions at the HSC-enriched endosteal surface. Cells respond to extracellular ionic calcium concentrations through the seven-transmembrane-spanning calcium-sensing receptor (CaR), which we identified as being expressed on HSCs. Here we show that, through the CaR, the simple ionic mineral content of the niche may dictate the preferential localization of adult mammalian haematopoiesis in bone. Antenatal mice deficient in CaR had primitive haematopoietic cells in the circulation and spleen, whereas few were found in bone marrow. CaR-/- HSCs from fetal liver were normal in number, in proliferative and differentiative function, and in migration and homing to the bone marrow. Yet they were highly defective in localizing anatomically to the endosteal niche, behaviour that correlated with defective adhesion to the extracellular matrix protein, collagen I. CaR has a function in retaining HSCs in close physical proximity to the endosteal surface and the regulatory niche components associated with it.
Website Age:
30 years and 10 months (reg. 1994-08-11).
Matching Content Categories {π}
- Science
- Education
- Insurance
Content Management System {π}
What CMS is nature.com built with?
Custom-built
No common CMS systems were detected on Nature.com, and no known web development framework was identified.
Traffic Estimate {π}
What is the average monthly size of nature.com audience?
π Phenomenal Traffic: 5M - 10M visitors per month
Based on our best estimate, this website will receive around 5,000,019 visitors per month in the current month.
However, some sources were not loaded, we suggest to reload the page to get complete results.
check SE Ranking
check Ahrefs
check Similarweb
check Ubersuggest
check Semrush
How Does Nature.com Make Money? {πΈ}
Display Ads {π―}
The website utilizes display ads within its content to generate revenue. Check the next section for further revenue estimates.
Ads are managed by yourbow.com. Particular relationships are as follows:
Direct Advertisers (10)
google.com, pmc.com, doceree.com, yourbow.com, audienciad.com, onlinemediasolutions.com, advibe.media, aps.amazon.com, getmediamx.com, onomagic.comReseller Advertisers (38)
conversantmedia.com, rubiconproject.com, pubmatic.com, appnexus.com, openx.com, smartadserver.com, lijit.com, sharethrough.com, video.unrulymedia.com, google.com, yahoo.com, triplelift.com, onetag.com, sonobi.com, contextweb.com, 33across.com, indexexchange.com, media.net, themediagrid.com, adform.com, richaudience.com, sovrn.com, improvedigital.com, freewheel.tv, smaato.com, yieldmo.com, amxrtb.com, adyoulike.com, adpone.com, criteo.com, smilewanted.com, 152media.info, e-planning.net, smartyads.com, loopme.com, opera.com, mediafuse.com, betweendigital.comHow Much Does Nature.com Make? {π°}
Display Ads {π―}
$63,100 per month
Our estimates place Nature.com's monthly online earnings from display ads at $42,042 to $115,616.
Keywords {π}
article, cells, google, scholar, nature, stem, cas, bone, cell, marrow, car, niche, access, hematopoietic, content, haematopoietic, calciumsensing, receptor, scadden, blood, pubmed, cookies, endosteal, mice, expression, usa, research, privacy, information, adams, extracellular, ads, massachusetts, analysis, data, journal, engraftment, chabner, alley, zbigniew, szczepiorkowski, david, hscs, fetal, calcium, localization, development, mouse, vivo, microenvironment,
Topics {βοΈ}
nature portfolio privacy policy stem cell research permissions reprints transmembrane-spanning calcium-sensing receptor d-galactose-induced aging model advertising nature cell biol nanoparticle research cation-sensing receptor-deficient mice social media nature genet nature med early g1-phase inhibitor extracellular calcium-sensing receptor nature 425 nature 415 nature nature 439 sca-1+lin- cells fractionated lin-c-kit+sca-1+ calcium-sensing receptor gregor membrane biology program personal data dartmouth-hitchcock medical center author correspondence hsc-enriched endosteal surface permissions information hematopoietic stem cells data protection calcium-sensing receptor springerlink instant access haematopoietic stem cells marrow development stem cell lodgment stem cell niches stem cell engraftment extracellular matrix protein bone morphogenetic protein real time pcr primitive haematopoietic cells lin-c-kit+ cell cycle status competing financial interests privacy extracellular calcium elicits cell tissue kinet permissions hematopoietic microenvironment dartmouth medical school
Schema {πΊοΈ}
WebPage:
mainEntity:
headline:Stem cell engraftment at the endosteal niche is specified by the calcium-sensing receptor
description:Haematopoietic stem cells Γ’ΒΒhomeΓ’ΒΒ to the bone marrow during embryogenesis and after bone marrow transplants. With the exception of integrins, the molecules that mediate this process are largely unknown. Now Adams et al. have identified another factor essential for homing, a membrane-spanning molecule called calcium-sensing receptor (CaR). Cells lacking CaR divide normally, but the newly formed cells are unable to migrate and home to the bone marrow. This newly recognized participant in the localization and engraftment of stem cells provides a potential target for affecting that process. During mammalian ontogeny, haematopoietic stem cells (HSCs) translocate from the fetal liver to the bone marrow, where haematopoiesis occurs throughout adulthood1. Unique features of bone that contribute to a microenvironmental niche for stem cells might include the known high concentration of calcium ions at the HSC-enriched endosteal surface. Cells respond to extracellular ionic calcium concentrations through the seven-transmembrane-spanning calcium-sensing receptor (CaR), which we identified as being expressed on HSCs. Here we show that, through the CaR, the simple ionic mineral content of the niche may dictate the preferential localization of adult mammalian haematopoiesis in bone. Antenatal mice deficient in CaR had primitive haematopoietic cells in the circulation and spleen, whereas few were found in bone marrow. CaR-/- HSCs from fetal liver were normal in number, in proliferative and differentiative function, and in migration and homing to the bone marrow. Yet they were highly defective in localizing anatomically to the endosteal niche, behaviour that correlated with defective adhesion to the extracellular matrix protein, collagen I. CaR has a function in retaining HSCs in close physical proximity to the endosteal surface and the regulatory niche components associated with it.
datePublished:2005-12-28T00:00:00Z
dateModified:2005-12-28T00:00:00Z
pageStart:599
pageEnd:603
sameAs:https://doi.org/10.1038/nature04247
keywords:
Science
Humanities and Social Sciences
multidisciplinary
image:
https://media.springernature.com/lw1200/springer-static/image/art%3A10.1038%2Fnature04247/MediaObjects/41586_2006_Article_BFnature04247_Fig1_HTML.jpg
https://media.springernature.com/lw1200/springer-static/image/art%3A10.1038%2Fnature04247/MediaObjects/41586_2006_Article_BFnature04247_Fig2_HTML.jpg
https://media.springernature.com/lw1200/springer-static/image/art%3A10.1038%2Fnature04247/MediaObjects/41586_2006_Article_BFnature04247_Fig3_HTML.jpg
https://media.springernature.com/lw1200/springer-static/image/art%3A10.1038%2Fnature04247/MediaObjects/41586_2006_Article_BFnature04247_Fig4_HTML.jpg
isPartOf:
name:Nature
issn:
1476-4687
0028-0836
volumeNumber:439
type:
Periodical
PublicationVolume
publisher:
name:Nature Publishing Group UK
logo:
url:https://www.springernature.com/app-sn/public/images/logo-springernature.png
type:ImageObject
type:Organization
author:
name:Gregor B. Adams
affiliation:
name:Center for Regenerative Medicine
address:
name:Center for Regenerative Medicine,
type:PostalAddress
type:Organization
name:Harvard University
address:
name:Harvard Stem Cell Institute, Harvard University, Cambridge, USA
type:PostalAddress
type:Organization
type:Person
name:Karissa T. Chabner
affiliation:
name:Center for Regenerative Medicine
address:
name:Center for Regenerative Medicine,
type:PostalAddress
type:Organization
name:Harvard University
address:
name:Harvard Stem Cell Institute, Harvard University, Cambridge, USA
type:PostalAddress
type:Organization
type:Person
name:Ian R. Alley
affiliation:
name:Center for Regenerative Medicine
address:
name:Center for Regenerative Medicine,
type:PostalAddress
type:Organization
name:Harvard University
address:
name:Harvard Stem Cell Institute, Harvard University, Cambridge, USA
type:PostalAddress
type:Organization
type:Person
name:Douglas P. Olson
affiliation:
name:Center for Regenerative Medicine
address:
name:Center for Regenerative Medicine,
type:PostalAddress
type:Organization
type:Person
name:Zbigniew M. Szczepiorkowski
affiliation:
name:Center for Regenerative Medicine
address:
name:Center for Regenerative Medicine,
type:PostalAddress
type:Organization
name:Massachusetts General Hospital, Harvard Medical School
address:
name:Blood Transfusion Service, Massachusetts General Hospital, Harvard Medical School, Boston, USA
type:PostalAddress
type:Organization
name:Dartmouth Medical School
address:
name:Department of Pathology, Dartmouth-Hitchcock Medical Center, Dartmouth Medical School, Lebanon, USA
type:PostalAddress
type:Organization
type:Person
name:Mark C. Poznansky
affiliation:
name:Center for Regenerative Medicine
address:
name:Center for Regenerative Medicine,
type:PostalAddress
type:Organization
type:Person
name:Claudine H. Kos
affiliation:
name:Renal Division
address:
name:Renal Division, Boston, USA
type:PostalAddress
type:Organization
type:Person
name:Martin R. Pollak
affiliation:
name:Renal Division
address:
name:Renal Division, Boston, USA
type:PostalAddress
type:Organization
type:Person
name:Edward M. Brown
affiliation:
name:Brigham and Women's Hospital, Harvard Medical School
address:
name:Endocrine-Hypertension Division, Membrane Biology Program, Brigham and Women's Hospital, Harvard Medical School, Boston, USA
type:PostalAddress
type:Organization
type:Person
name:David T. Scadden
affiliation:
name:Center for Regenerative Medicine
address:
name:Center for Regenerative Medicine,
type:PostalAddress
type:Organization
name:Harvard University
address:
name:Harvard Stem Cell Institute, Harvard University, Cambridge, USA
type:PostalAddress
type:Organization
email:[email protected]
type:Person
isAccessibleForFree:
hasPart:
isAccessibleForFree:
cssSelector:.main-content
type:WebPageElement
type:ScholarlyArticle
context:https://schema.org
ScholarlyArticle:
headline:Stem cell engraftment at the endosteal niche is specified by the calcium-sensing receptor
description:Haematopoietic stem cells Γ’ΒΒhomeΓ’ΒΒ to the bone marrow during embryogenesis and after bone marrow transplants. With the exception of integrins, the molecules that mediate this process are largely unknown. Now Adams et al. have identified another factor essential for homing, a membrane-spanning molecule called calcium-sensing receptor (CaR). Cells lacking CaR divide normally, but the newly formed cells are unable to migrate and home to the bone marrow. This newly recognized participant in the localization and engraftment of stem cells provides a potential target for affecting that process. During mammalian ontogeny, haematopoietic stem cells (HSCs) translocate from the fetal liver to the bone marrow, where haematopoiesis occurs throughout adulthood1. Unique features of bone that contribute to a microenvironmental niche for stem cells might include the known high concentration of calcium ions at the HSC-enriched endosteal surface. Cells respond to extracellular ionic calcium concentrations through the seven-transmembrane-spanning calcium-sensing receptor (CaR), which we identified as being expressed on HSCs. Here we show that, through the CaR, the simple ionic mineral content of the niche may dictate the preferential localization of adult mammalian haematopoiesis in bone. Antenatal mice deficient in CaR had primitive haematopoietic cells in the circulation and spleen, whereas few were found in bone marrow. CaR-/- HSCs from fetal liver were normal in number, in proliferative and differentiative function, and in migration and homing to the bone marrow. Yet they were highly defective in localizing anatomically to the endosteal niche, behaviour that correlated with defective adhesion to the extracellular matrix protein, collagen I. CaR has a function in retaining HSCs in close physical proximity to the endosteal surface and the regulatory niche components associated with it.
datePublished:2005-12-28T00:00:00Z
dateModified:2005-12-28T00:00:00Z
pageStart:599
pageEnd:603
sameAs:https://doi.org/10.1038/nature04247
keywords:
Science
Humanities and Social Sciences
multidisciplinary
image:
https://media.springernature.com/lw1200/springer-static/image/art%3A10.1038%2Fnature04247/MediaObjects/41586_2006_Article_BFnature04247_Fig1_HTML.jpg
https://media.springernature.com/lw1200/springer-static/image/art%3A10.1038%2Fnature04247/MediaObjects/41586_2006_Article_BFnature04247_Fig2_HTML.jpg
https://media.springernature.com/lw1200/springer-static/image/art%3A10.1038%2Fnature04247/MediaObjects/41586_2006_Article_BFnature04247_Fig3_HTML.jpg
https://media.springernature.com/lw1200/springer-static/image/art%3A10.1038%2Fnature04247/MediaObjects/41586_2006_Article_BFnature04247_Fig4_HTML.jpg
isPartOf:
name:Nature
issn:
1476-4687
0028-0836
volumeNumber:439
type:
Periodical
PublicationVolume
publisher:
name:Nature Publishing Group UK
logo:
url:https://www.springernature.com/app-sn/public/images/logo-springernature.png
type:ImageObject
type:Organization
author:
name:Gregor B. Adams
affiliation:
name:Center for Regenerative Medicine
address:
name:Center for Regenerative Medicine,
type:PostalAddress
type:Organization
name:Harvard University
address:
name:Harvard Stem Cell Institute, Harvard University, Cambridge, USA
type:PostalAddress
type:Organization
type:Person
name:Karissa T. Chabner
affiliation:
name:Center for Regenerative Medicine
address:
name:Center for Regenerative Medicine,
type:PostalAddress
type:Organization
name:Harvard University
address:
name:Harvard Stem Cell Institute, Harvard University, Cambridge, USA
type:PostalAddress
type:Organization
type:Person
name:Ian R. Alley
affiliation:
name:Center for Regenerative Medicine
address:
name:Center for Regenerative Medicine,
type:PostalAddress
type:Organization
name:Harvard University
address:
name:Harvard Stem Cell Institute, Harvard University, Cambridge, USA
type:PostalAddress
type:Organization
type:Person
name:Douglas P. Olson
affiliation:
name:Center for Regenerative Medicine
address:
name:Center for Regenerative Medicine,
type:PostalAddress
type:Organization
type:Person
name:Zbigniew M. Szczepiorkowski
affiliation:
name:Center for Regenerative Medicine
address:
name:Center for Regenerative Medicine,
type:PostalAddress
type:Organization
name:Massachusetts General Hospital, Harvard Medical School
address:
name:Blood Transfusion Service, Massachusetts General Hospital, Harvard Medical School, Boston, USA
type:PostalAddress
type:Organization
name:Dartmouth Medical School
address:
name:Department of Pathology, Dartmouth-Hitchcock Medical Center, Dartmouth Medical School, Lebanon, USA
type:PostalAddress
type:Organization
type:Person
name:Mark C. Poznansky
affiliation:
name:Center for Regenerative Medicine
address:
name:Center for Regenerative Medicine,
type:PostalAddress
type:Organization
type:Person
name:Claudine H. Kos
affiliation:
name:Renal Division
address:
name:Renal Division, Boston, USA
type:PostalAddress
type:Organization
type:Person
name:Martin R. Pollak
affiliation:
name:Renal Division
address:
name:Renal Division, Boston, USA
type:PostalAddress
type:Organization
type:Person
name:Edward M. Brown
affiliation:
name:Brigham and Women's Hospital, Harvard Medical School
address:
name:Endocrine-Hypertension Division, Membrane Biology Program, Brigham and Women's Hospital, Harvard Medical School, Boston, USA
type:PostalAddress
type:Organization
type:Person
name:David T. Scadden
affiliation:
name:Center for Regenerative Medicine
address:
name:Center for Regenerative Medicine,
type:PostalAddress
type:Organization
name:Harvard University
address:
name:Harvard Stem Cell Institute, Harvard University, Cambridge, USA
type:PostalAddress
type:Organization
email:[email protected]
type:Person
isAccessibleForFree:
hasPart:
isAccessibleForFree:
cssSelector:.main-content
type:WebPageElement
["Periodical","PublicationVolume"]:
name:Nature
issn:
1476-4687
0028-0836
volumeNumber:439
Organization:
name:Nature Publishing Group UK
logo:
url:https://www.springernature.com/app-sn/public/images/logo-springernature.png
type:ImageObject
name:Center for Regenerative Medicine
address:
name:Center for Regenerative Medicine,
type:PostalAddress
name:Harvard University
address:
name:Harvard Stem Cell Institute, Harvard University, Cambridge, USA
type:PostalAddress
name:Center for Regenerative Medicine
address:
name:Center for Regenerative Medicine,
type:PostalAddress
name:Harvard University
address:
name:Harvard Stem Cell Institute, Harvard University, Cambridge, USA
type:PostalAddress
name:Center for Regenerative Medicine
address:
name:Center for Regenerative Medicine,
type:PostalAddress
name:Harvard University
address:
name:Harvard Stem Cell Institute, Harvard University, Cambridge, USA
type:PostalAddress
name:Center for Regenerative Medicine
address:
name:Center for Regenerative Medicine,
type:PostalAddress
name:Center for Regenerative Medicine
address:
name:Center for Regenerative Medicine,
type:PostalAddress
name:Massachusetts General Hospital, Harvard Medical School
address:
name:Blood Transfusion Service, Massachusetts General Hospital, Harvard Medical School, Boston, USA
type:PostalAddress
name:Dartmouth Medical School
address:
name:Department of Pathology, Dartmouth-Hitchcock Medical Center, Dartmouth Medical School, Lebanon, USA
type:PostalAddress
name:Center for Regenerative Medicine
address:
name:Center for Regenerative Medicine,
type:PostalAddress
name:Renal Division
address:
name:Renal Division, Boston, USA
type:PostalAddress
name:Renal Division
address:
name:Renal Division, Boston, USA
type:PostalAddress
name:Brigham and Women's Hospital, Harvard Medical School
address:
name:Endocrine-Hypertension Division, Membrane Biology Program, Brigham and Women's Hospital, Harvard Medical School, Boston, USA
type:PostalAddress
name:Center for Regenerative Medicine
address:
name:Center for Regenerative Medicine,
type:PostalAddress
name:Harvard University
address:
name:Harvard Stem Cell Institute, Harvard University, Cambridge, USA
type:PostalAddress
ImageObject:
url:https://www.springernature.com/app-sn/public/images/logo-springernature.png
Person:
name:Gregor B. Adams
affiliation:
name:Center for Regenerative Medicine
address:
name:Center for Regenerative Medicine,
type:PostalAddress
type:Organization
name:Harvard University
address:
name:Harvard Stem Cell Institute, Harvard University, Cambridge, USA
type:PostalAddress
type:Organization
name:Karissa T. Chabner
affiliation:
name:Center for Regenerative Medicine
address:
name:Center for Regenerative Medicine,
type:PostalAddress
type:Organization
name:Harvard University
address:
name:Harvard Stem Cell Institute, Harvard University, Cambridge, USA
type:PostalAddress
type:Organization
name:Ian R. Alley
affiliation:
name:Center for Regenerative Medicine
address:
name:Center for Regenerative Medicine,
type:PostalAddress
type:Organization
name:Harvard University
address:
name:Harvard Stem Cell Institute, Harvard University, Cambridge, USA
type:PostalAddress
type:Organization
name:Douglas P. Olson
affiliation:
name:Center for Regenerative Medicine
address:
name:Center for Regenerative Medicine,
type:PostalAddress
type:Organization
name:Zbigniew M. Szczepiorkowski
affiliation:
name:Center for Regenerative Medicine
address:
name:Center for Regenerative Medicine,
type:PostalAddress
type:Organization
name:Massachusetts General Hospital, Harvard Medical School
address:
name:Blood Transfusion Service, Massachusetts General Hospital, Harvard Medical School, Boston, USA
type:PostalAddress
type:Organization
name:Dartmouth Medical School
address:
name:Department of Pathology, Dartmouth-Hitchcock Medical Center, Dartmouth Medical School, Lebanon, USA
type:PostalAddress
type:Organization
name:Mark C. Poznansky
affiliation:
name:Center for Regenerative Medicine
address:
name:Center for Regenerative Medicine,
type:PostalAddress
type:Organization
name:Claudine H. Kos
affiliation:
name:Renal Division
address:
name:Renal Division, Boston, USA
type:PostalAddress
type:Organization
name:Martin R. Pollak
affiliation:
name:Renal Division
address:
name:Renal Division, Boston, USA
type:PostalAddress
type:Organization
name:Edward M. Brown
affiliation:
name:Brigham and Women's Hospital, Harvard Medical School
address:
name:Endocrine-Hypertension Division, Membrane Biology Program, Brigham and Women's Hospital, Harvard Medical School, Boston, USA
type:PostalAddress
type:Organization
name:David T. Scadden
affiliation:
name:Center for Regenerative Medicine
address:
name:Center for Regenerative Medicine,
type:PostalAddress
type:Organization
name:Harvard University
address:
name:Harvard Stem Cell Institute, Harvard University, Cambridge, USA
type:PostalAddress
type:Organization
email:[email protected]
PostalAddress:
name:Center for Regenerative Medicine,
name:Harvard Stem Cell Institute, Harvard University, Cambridge, USA
name:Center for Regenerative Medicine,
name:Harvard Stem Cell Institute, Harvard University, Cambridge, USA
name:Center for Regenerative Medicine,
name:Harvard Stem Cell Institute, Harvard University, Cambridge, USA
name:Center for Regenerative Medicine,
name:Center for Regenerative Medicine,
name:Blood Transfusion Service, Massachusetts General Hospital, Harvard Medical School, Boston, USA
name:Department of Pathology, Dartmouth-Hitchcock Medical Center, Dartmouth Medical School, Lebanon, USA
name:Center for Regenerative Medicine,
name:Renal Division, Boston, USA
name:Renal Division, Boston, USA
name:Endocrine-Hypertension Division, Membrane Biology Program, Brigham and Women's Hospital, Harvard Medical School, Boston, USA
name:Center for Regenerative Medicine,
name:Harvard Stem Cell Institute, Harvard University, Cambridge, USA
WebPageElement:
isAccessibleForFree:
cssSelector:.main-content
External Links {π}(90)
- What's the monthly money flow for https://link.springer.com/article/10.1038/nature04247?utm_source=nature&utm_medium=referral&utm_campaign=buyArticle?
- http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1912596's revenue stream
- What is the monthly revenue of http://scholar.google.com/scholar_lookup?&title=Embryonic%20and%20fetal%20hemopoiesis%3A%20an%20overview&journal=Blood%20Cells&volume=17&pages=269-281&publication_year=1991&author=Tavassoli%2CM?
- How much does http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1131427 gross monthly?
- What's the income of http://scholar.google.com/scholar_lookup?&title=The%20relative%20spatial%20distributions%20of%20CFUs%20and%20CFUc%20in%20the%20normal%20mouse%20femur&journal=Blood&volume=46&pages=65-72&publication_year=1975&author=Lord%2CBI&author=Testa%2CNG&author=Hendry%2CJH?
- What is the monthly revenue of https://doi.org/10.1126%2Fscience.75570?
- How much does http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&bibcode=1978Sci...199.1443G make?
- How much money does http://scholar.google.com/scholar_lookup?&title=Endosteal%20marrow%3A%20a%20rich%20source%20of%20hematopoietic%20stem%20cells&journal=Science&doi=10.1126%2Fscience.75570&volume=199&pages=1443-1445&publication_year=1978&author=Gong%2CJK make?
- What is the monthly revenue of https://doi.org/10.1182%2Fblood.V97.8.2293?
- How much profit does http://scholar.google.com/scholar_lookup?&title=Spatial%20localization%20of%20transplanted%20hemopoietic%20stem%20cells%3A%20inferences%20for%20the%20localization%20of%20stem%20cell%20niches&journal=Blood&doi=10.1182%2Fblood.V97.8.2293&volume=97&pages=2293-2299&publication_year=2001&author=Nilsson%2CSK&author=Johnston%2CHM&author=Coverdale%2CJA make?
- How much does https://doi.org/10.1016%2FS8756-3282%2895%2900264-2 net monthly?
- What is the monthly revenue of http://scholar.google.com/scholar_lookup?&title=Marrow%20development%20and%20its%20relationship%20to%20bone%20formation%20in%20vivo%3A%20a%20histological%20study%20using%20an%20implantable%20titanium%20device%20in%20rabbits&journal=Bone&doi=10.1016%2FS8756-3282%2895%2900264-2&volume=17&pages=407-415&publication_year=1995&author=Zhou%2CH?
- What is the monthly revenue of https://doi.org/10.1006%2Fbbrc.1999.0163?
- How much cash flow does http://scholar.google.com/scholar_lookup?&title=Excessive%20extramedullary%20hematopoiesis%20in%20Cbfa1-deficient%20mice%20with%20a%20congenital%20lack%20of%20bone%20marrow&journal=Biochem.%20Biophys.%20Res.%20Commun.&doi=10.1006%2Fbbrc.1999.0163&volume=255&pages=352-359&publication_year=1999&author=Deguchi%2CK have monthly?
- How much revenue does https://doi.org/10.1016%2FS0002-9440%2810%2961152-2 bring in?
- http://scholar.google.com/scholar_lookup?&title=Linking%20hematopoiesis%20to%20endochondral%20skeletogenesis%20through%20analysis%20of%20mice%20transgenic%20for%20collagen%20X&journal=Am.%20J.%20Pathol.&doi=10.1016%2FS0002-9440%2810%2961152-2&volume=160&pages=2019-2034&publication_year=2002&author=Jacenko%2CO's revenue stream
- How much income does https://doi.org/10.1038%2Fnature02040 have?
- How much does http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&bibcode=2003Natur.425..841C rake in every month?
- How much does http://scholar.google.com/scholar_lookup?&title=Osteoblastic%20cells%20regulate%20the%20haematopoietic%20stem%20cell%20niche&journal=Nature&doi=10.1038%2Fnature02040&volume=425&pages=841-846&publication_year=2003&author=Calvi%2CLM generate monthly?
- Earnings of https://doi.org/10.1038%2Fnature02041
- How much does http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&bibcode=2003Natur.425..836Z pull in?
- How much revenue does http://scholar.google.com/scholar_lookup?&title=Identification%20of%20the%20haematopoietic%20stem%20cell%20niche%20and%20control%20of%20the%20niche%20size&journal=Nature&doi=10.1038%2Fnature02041&volume=415&pages=836-841&publication_year=2003&author=Zhang%2CJ produce monthly?
- How much cash flow does https://doi.org/10.1016%2F0014-4827%2888%2990191-7 have monthly?
- What are the total earnings of http://scholar.google.com/scholar_lookup?&title=Microelectrode%20studies%20on%20the%20acid%20microenvironment%20beneath%20adherent%20macrophages%20and%20osteoclasts&journal=Exp.%20Cell%20Res.&doi=10.1016%2F0014-4827%2888%2990191-7&volume=175&pages=266-276&publication_year=1988&author=Silver%2CIA&author=Murrills%2CRJ&author=Etherington%2CDJ?
- How much does http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9377470 gross monthly?
- http://scholar.google.com/scholar_lookup?&title=Calcium-sensing%20receptor%3A%20roles%20in%20and%20beyond%20systemic%20calcium%20homeostasis&journal=Biol.%20Chem.&volume=378&pages=759-768&publication_year=1997&author=Chattopadhyay%2CN&author=Vassilev%2CPM&author=Brown%2CEM's total income per month
- What's the total monthly financial gain of https://doi.org/10.1359%2Fjbmr.1997.12.12.1959?
- Profit of http://scholar.google.com/scholar_lookup?&title=Expression%20of%20an%20extracellular%20calcium-sensing%20receptor%20in%20human%20and%20mouse%20bone%20marrow%20cells&journal=J.%20Bone%20Miner.%20Res.&doi=10.1359%2Fjbmr.1997.12.12.1959&volume=12&pages=1959-1970&publication_year=1997&author=House%2CMG
- Financial intake of https://doi.org/10.1172%2FJCI9799
- Monthly income for http://scholar.google.com/scholar_lookup?&title=Extracellular%20calcium%20elicits%20a%20chemokinetic%20response%20from%20monocytes%20in%20vitro%20and%20in%20vivo&journal=J.%20Clin.%20Invest.&doi=10.1172%2FJCI9799&volume=105&pages=1299-1305&publication_year=2000&author=Olszak%2CIT
- Get to know what's the income of https://doi.org/10.1038%2Fng1295-389
- How much does http://scholar.google.com/scholar_lookup?&title=A%20mouse%20model%20of%20human%20familial%20hypocalciuric%20hypercalcemia%20and%20neonatal%20severe%20hyperparathyroidism&journal=Nature%20Genet.&doi=10.1038%2Fng1295-389&volume=11&pages=389-394&publication_year=1995&author=Ho%2CC bring in each month?
- What's the income generated by https://doi.org/10.1210%2Fendo.142.9.8364 each month?
- How much does http://scholar.google.com/scholar_lookup?&title=Rickets%20in%20cation-sensing%20receptor-deficient%20mice%3A%20an%20unexpected%20skeletal%20phenotype&journal=Endocrinology&doi=10.1210%2Fendo.142.9.8364&volume=142&pages=3996-4005&publication_year=2001&author=Garner%2CSC&author=Pi%2CM&author=Tu%2CQ&author=Quarles%2CLD gross monthly?
- Discover the revenue of https://doi.org/10.1073%2Fpnas.87.9.3584
- How much revenue does http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&bibcode=1990PNAS...87.3584S produce monthly?
- Get to know http://scholar.google.com/scholar_lookup?&title=Functional%20characterization%20of%20individual%20human%20hematopoietic%20stem%20cells%20cultured%20at%20limiting%20dilution%20on%20supportive%20marrow%20stromal%20layers&journal=Proc.%20Natl%20Acad.%20Sci.%20USA&doi=10.1073%2Fpnas.87.9.3584&volume=87&pages=3584-3588&publication_year=1990&author=Sutherland%2CHJ&author=Lansdorp%2CPM&author=Henkelman%2CD&author=Eaves%2CAC&author=Eaves%2CCJ's earnings
- How much does https://doi.org/10.1038%2Fncb1126 pull in monthly?
- What's the monthly income of http://scholar.google.com/scholar_lookup?&title=In%20vivo%20self-renewing%20divisions%20of%20haematopoietic%20stem%20cells%20are%20increased%20in%20the%20absence%20of%20the%20early%20G1-phase%20inhibitor%2C%20p18INK4C&journal=Nature%20Cell%20Biol.&doi=10.1038%2Fncb1126&volume=6&pages=436-442&publication_year=2004&author=Yuan%2CY&author=Shen%2CH&author=Franklin%2CDS&author=Scadden%2CDT&author=Cheng%2CT?
- What are the total earnings of https://doi.org/10.1126%2Fscience.287.5459.1804?
- How much income does http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&bibcode=2000Sci...287.1804C have?
- What's the financial outcome of http://scholar.google.com/scholar_lookup?&title=Hematopoietic%20stem%20cell%20quiescence%20maintained%20by%20p21cip1%2Fwaf1&journal=Science&doi=10.1126%2Fscience.287.5459.1804&volume=287&pages=1804-1808&publication_year=2000&author=Cheng%2CT?
- How much revenue does https://doi.org/10.1038%2F81335 produce monthly?
- How much revenue does http://scholar.google.com/scholar_lookup?&title=Stem%20cell%20repopulation%20efficiency%20but%20not%20pool%20size%20is%20governed%20by%20p27kip1&journal=Nature%20Med.&doi=10.1038%2F81335&volume=6&pages=1235-1240&publication_year=2000&author=Cheng%2CT&author=Rodrigues%2CN&author=Dombkowski%2CD&author=Stier%2CS&author=Scadden%2CDT bring in?
- http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10942381's total income per month
- http://scholar.google.com/scholar_lookup?&title=Homing%20and%20engraftment%20potential%20of%20Sca-1%2Blin-%20cells%20fractionated%20on%20the%20basis%20of%20adhesion%20molecule%20expression%20and%20position%20in%20cell%20cycle&journal=Blood&volume=96&pages=1380-1387&publication_year=2000&author=Orschell-Traycoff%2CCM's total income per month
- http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=4589694's financial summary
- http://scholar.google.com/scholar_lookup?&title=Dissecting%20the%20hematopoietic%20microenvironment.%20I.%20Stem%20cell%20lodgment%20and%20commitment%2C%20and%20the%20proliferation%20and%20differentiation%20of%20erythropoietic%20descendants%20in%20the%20Sl%2FSld%20mouse&journal=Cell%20Tissue%20Kinet.&volume=7&pages=89-98&publication_year=1974&author=Wolf%2CNS's financial summary
- What are the total earnings of https://doi.org/10.1177%2F002215549804600311?
- What's the profit of http://scholar.google.com/scholar_lookup?&title=Immunofluorescence%20charaterization%20of%20key%20extracellular%20matrix%20proteins%20in%20murine%20bone%20marrow%20in%20situ&journal=J.%20Histochem.%20Cytochem.&doi=10.1177%2F002215549804600311&volume=46&pages=371-377&publication_year=1998&author=Nilsson%2CSK?
- How much income is http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7994060 earning monthly?
- What's the monthly money flow for http://scholar.google.com/scholar_lookup?&title=Development%20of%20hemopoietic%20bone%20marrow%20within%20the%20ectopic%20bone%20induced%20by%20bone%20morphogenetic%20protein&journal=Blood%20Cells&volume=20&pages=191-199&publication_year=1994&author=Kawai%2CM?
- How much profit does http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8647226 make?
- http://scholar.google.com/scholar_lookup?&title=Recombinant%20human%20bone%20morphogenetic%20protein-2%20induces%20a%20hematopoietic%20microenvironment%20in%20the%20rat%20that%20supports%20the%20growth%20of%20stem%20cells&journal=Exp.%20Hematol.&volume=24&pages=768-775&publication_year=1996&author=An%2CJ&author=Rosen%2CV&author=Cox%2CK&author=Beauchemin%2CN&author=Sullivan%2CAK income
- Monthly income for https://doi.org/10.1182%2Fblood.V99.7.2369
- Learn how profitable http://scholar.google.com/scholar_lookup?&title=Notch1%20activation%20increases%20hematopoietic%20stem%20cell%20self-renewal%20in%20vivo%20and%20favors%20lymphoid%20over%20myeloid%20lineage%20outcome&journal=Blood&doi=10.1182%2Fblood.V99.7.2369&volume=99&pages=2369-2378&publication_year=2002&author=Stier%2CS&author=Cheng%2CT&author=Dombkowski%2CD&author=Carlesso%2CN&author=Scadden%2CDT is on a monthly basis
- How much revenue does https://citation-needed.springer.com/v2/references/10.1038/nature04247?format=refman&flavour=references bring in?
- How much revenue does https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&term=Gregor%20B.%20Adams produce monthly?
- Get to know https://scholar.google.co.uk/scholar?as_q=&num=10&btnG=Search+Scholar&as_epq=&as_oq=&as_eq=&as_occt=any&as_sauthors=%22Gregor%20B.%20Adams%22&as_publication=&as_ylo=&as_yhi=&as_allsubj=all&hl=en's earnings
- What's the financial outcome of https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&term=Karissa%20T.%20Chabner?
- Monthly income for https://scholar.google.co.uk/scholar?as_q=&num=10&btnG=Search+Scholar&as_epq=&as_oq=&as_eq=&as_occt=any&as_sauthors=%22Karissa%20T.%20Chabner%22&as_publication=&as_ylo=&as_yhi=&as_allsubj=all&hl=en
- Discover the revenue of https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&term=Ian%20R.%20Alley
- How much does https://scholar.google.co.uk/scholar?as_q=&num=10&btnG=Search+Scholar&as_epq=&as_oq=&as_eq=&as_occt=any&as_sauthors=%22Ian%20R.%20Alley%22&as_publication=&as_ylo=&as_yhi=&as_allsubj=all&hl=en gross monthly?
- Get to know what's the income of https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&term=Douglas%20P.%20Olson
- What's the financial intake of https://scholar.google.co.uk/scholar?as_q=&num=10&btnG=Search+Scholar&as_epq=&as_oq=&as_eq=&as_occt=any&as_sauthors=%22Douglas%20P.%20Olson%22&as_publication=&as_ylo=&as_yhi=&as_allsubj=all&hl=en?
- https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&term=Zbigniew%20M.%20Szczepiorkowski's total income per month
- What's the revenue for https://scholar.google.co.uk/scholar?as_q=&num=10&btnG=Search+Scholar&as_epq=&as_oq=&as_eq=&as_occt=any&as_sauthors=%22Zbigniew%20M.%20Szczepiorkowski%22&as_publication=&as_ylo=&as_yhi=&as_allsubj=all&hl=en?
- Discover the revenue of https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&term=Mark%20C.%20Poznansky
- Get to know https://scholar.google.co.uk/scholar?as_q=&num=10&btnG=Search+Scholar&as_epq=&as_oq=&as_eq=&as_occt=any&as_sauthors=%22Mark%20C.%20Poznansky%22&as_publication=&as_ylo=&as_yhi=&as_allsubj=all&hl=en's earnings
- What is the monthly revenue of https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&term=Claudine%20H.%20Kos?
- How much money does https://scholar.google.co.uk/scholar?as_q=&num=10&btnG=Search+Scholar&as_epq=&as_oq=&as_eq=&as_occt=any&as_sauthors=%22Claudine%20H.%20Kos%22&as_publication=&as_ylo=&as_yhi=&as_allsubj=all&hl=en generate?
- What's the monthly income of https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&term=Martin%20R.%20Pollak?
- How much does https://scholar.google.co.uk/scholar?as_q=&num=10&btnG=Search+Scholar&as_epq=&as_oq=&as_eq=&as_occt=any&as_sauthors=%22Martin%20R.%20Pollak%22&as_publication=&as_ylo=&as_yhi=&as_allsubj=all&hl=en earn?
- How much does https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&term=Edward%20M.%20Brown bring in each month?
- How much does https://scholar.google.co.uk/scholar?as_q=&num=10&btnG=Search+Scholar&as_epq=&as_oq=&as_eq=&as_occt=any&as_sauthors=%22Edward%20M.%20Brown%22&as_publication=&as_ylo=&as_yhi=&as_allsubj=all&hl=en generate monthly?
- What's the total monthly financial gain of https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&term=David%20T.%20Scadden?
- How much does https://scholar.google.co.uk/scholar?as_q=&num=10&btnG=Search+Scholar&as_epq=&as_oq=&as_eq=&as_occt=any&as_sauthors=%22David%20T.%20Scadden%22&as_publication=&as_ylo=&as_yhi=&as_allsubj=all&hl=en bring in each month?
- How much does https://static-content.springer.com/esm/art%3A10.1038%2Fnature04247/MediaObjects/41586_2006_BFnature04247_MOESM1_ESM.pdf pull in?
- https://static-content.springer.com/esm/art%3A10.1038%2Fnature04247/MediaObjects/41586_2006_BFnature04247_MOESM2_ESM.pdf's revenue stream
- How much money does https://s100.copyright.com/AppDispatchServlet?title=Stem%20cell%20engraftment%20at%20the%20endosteal%20niche%20is%20specified%20by%20the%20calcium-sensing%20receptor&author=Gregor%20B.%20Adams%20et%20al&contentID=10.1038%2Fnature04247©right=Springer%20Nature%20Limited&publication=0028-0836&publicationDate=2005-12-28&publisherName=SpringerNature&orderBeanReset=true generate?
- How much does https://citation-needed.springer.com/v2/references/10.1038/nature04247?format=refman&flavour=citation pull in?
- How much profit does https://doi.org/10.1038/s41413-023-00249-w make?
- How much profit does https://doi.org/10.1038/s41467-023-41770-0 make?
- https://doi.org/10.1007/s00109-023-02315-6 income
- How much profit is https://doi.org/10.1007/s11033-022-07898-w making per month?
- Get to know what's the income of https://doi.org/10.1007/s11051-022-05654-6
- How profitable is https://www.protocols.io/?
- How much does https://www.natureindex.com/ rake in every month?
- How much does http://www.naturechina.com net monthly?
- What's the income generated by https://www.natureasia.com/ja-jp each month?
Analytics and Tracking {π}
- Google Tag Manager
Libraries {π}
- Prism.js
- Zoom.js
Emails and Hosting {βοΈ}
Mail Servers:
- mxa-002c5801.gslb.pphosted.com
- mxb-002c5801.gslb.pphosted.com
Name Servers:
- pdns1.ultradns.net
- pdns2.ultradns.net
- pdns3.ultradns.org
- pdns4.ultradns.org
- pdns5.ultradns.info
- pdns6.ultradns.co.uk
CDN Services {π¦}
- Crossref