Here's how LINK.SPRINGER.COM makes money* and how much!

*Please read our disclaimer before using our estimates.
Loading...

LINK . SPRINGER . COM {}

  1. Analyzed Page
  2. Matching Content Categories
  3. CMS
  4. Monthly Traffic Estimate
  5. How Does Link.springer.com Make Money
  6. Keywords
  7. Topics
  8. Questions
  9. Schema
  10. External Links
  11. Analytics And Tracking
  12. Libraries
  13. CDN Services

We are analyzing https://link.springer.com/article/10.1186/gb-2010-11-10-r106.

Title:
Differential expression analysis for sequence count data | Genome Biology
Description:
High-throughput sequencing assays such as RNA-Seq, ChIP-Seq or barcode counting provide quantitative readouts in the form of count data. To infer differential signal in such data correctly and with good statistical power, estimation of data variability throughout the dynamic range and a suitable error model are required. We propose a method based on the negative binomial distribution, with variance and mean linked by local regression and present an implementation, DESeq, as an R/Bioconductor package.
Website Age:
28 years and 1 months (reg. 1997-05-29).

Matching Content Categories {πŸ“š}

  • Education
  • Science
  • Technology & Computing

Content Management System {πŸ“}

What CMS is link.springer.com built with?

Custom-built

No common CMS systems were detected on Link.springer.com, and no known web development framework was identified.

Traffic Estimate {πŸ“ˆ}

What is the average monthly size of link.springer.com audience?

🌠 Phenomenal Traffic: 5M - 10M visitors per month


Based on our best estimate, this website will receive around 8,123,328 visitors per month in the current month.

check SE Ranking
check Ahrefs
check Similarweb
check Ubersuggest
check Semrush

How Does Link.springer.com Make Money? {πŸ’Έ}

We're unsure how the site profits.

The purpose of some websites isn't monetary gain; they're meant to inform, educate, or foster collaboration. Everyone has unique reasons for building websites. This could be an example. Link.springer.com might be earning cash quietly, but we haven't detected the monetization method.

Keywords {πŸ”}

data, variance, replicates, figure, distribution, article, samples, gene, counts, google, scholar, expression, file, deseq, values, genes, rnaseq, differential, edger, noise, additional, condition, size, analysis, model, poisson, count, biological, sequencing, sample, supplementary, shot, estimate, expressed, range, binomial, test, note, genome, negative, show, section, raw, method, error, regression, package, variation, small, shows,

Topics {βœ’οΈ}

org/scipy/raw-attachment/ticket/620/loader2000fast de/users/anders/htseq/] deseq genome-wide profiles org/web/packages/locfit/] agresti glioblastoma-derived neural stem-cells pol-ii chip-seq data articleΒ numberΒ r106 article download pdf negative binomial dispersion negative binomial distribution πœ‡ 𝑖 𝑗 tag-wise dispersion mode negative binomial distributions single-parameter noise model european union research open software development simon anders 𝑀 𝑖 𝜌 tag-wise dispersion estimation size factor sjrepresents author information authors conducted rna-seq experiments size factor sj transcription factor binding strong shot noise full size image 𝐾 𝑖 𝑗 shot noise term shot noise limit common-scale count data pre-determined binding regions negative binomial negative-binomial fly rna-seq data org/www-huber poisson shot noise poisson-based Ο‡2 test common-scale sample variances high-level functions gamma-family glm fit differential expression analysis deseq-estimated size factors maximum quasi-likelihood dependent local regression computational biology solutions article anders privacy choices/manage cookies expression strength parameter creative commons license cancerous neural stem

Questions {❓}

  • Why is it necessary to develop new statistical methodology for sequence count data?

Schema {πŸ—ΊοΈ}

WebPage:
      mainEntity:
         headline:Differential expression analysis for sequence count data
         description:High-throughput sequencing assays such as RNA-Seq, ChIP-Seq or barcode counting provide quantitative readouts in the form of count data. To infer differential signal in such data correctly and with good statistical power, estimation of data variability throughout the dynamic range and a suitable error model are required. We propose a method based on the negative binomial distribution, with variance and mean linked by local regression and present an implementation, DESeq, as an R/Bioconductor package.
         datePublished:2010-10-27T00:00:00Z
         dateModified:2010-10-27T00:00:00Z
         pageStart:1
         pageEnd:12
         sameAs:https://doi.org/10.1186/gb-2010-11-10-r106
         keywords:
            Shot Noise
            Local Regression
            Negative Binomial Distribution
            Negative Binomial
            Size Factor
            Animal Genetics and Genomics
            Human Genetics
            Plant Genetics and Genomics
            Microbial Genetics and Genomics
            Bioinformatics
            Evolutionary Biology
         image:
            https://media.springernature.com/lw1200/springer-static/image/art%3A10.1186%2Fgb-2010-11-10-r106/MediaObjects/13059_2010_9558_Fig1_HTML.jpg
            https://media.springernature.com/lw1200/springer-static/image/art%3A10.1186%2Fgb-2010-11-10-r106/MediaObjects/13059_2010_9558_Fig2_HTML.jpg
            https://media.springernature.com/lw1200/springer-static/image/art%3A10.1186%2Fgb-2010-11-10-r106/MediaObjects/13059_2010_9558_Fig3_HTML.jpg
            https://media.springernature.com/lw1200/springer-static/image/art%3A10.1186%2Fgb-2010-11-10-r106/MediaObjects/13059_2010_9558_Fig4_HTML.jpg
            https://media.springernature.com/lw1200/springer-static/image/art%3A10.1186%2Fgb-2010-11-10-r106/MediaObjects/13059_2010_9558_Fig5_HTML.jpg
            https://media.springernature.com/lw1200/springer-static/image/art%3A10.1186%2Fgb-2010-11-10-r106/MediaObjects/13059_2010_9558_Fig6_HTML.jpg
            https://media.springernature.com/lw1200/springer-static/image/art%3A10.1186%2Fgb-2010-11-10-r106/MediaObjects/13059_2010_9558_Fig7_HTML.jpg
         isPartOf:
            name:Genome Biology
            issn:
               1474-760X
            volumeNumber:11
            type:
               Periodical
               PublicationVolume
         publisher:
            name:BioMed Central
            logo:
               url:https://www.springernature.com/app-sn/public/images/logo-springernature.png
               type:ImageObject
            type:Organization
         author:
               name:Simon Anders
               affiliation:
                     name:European Molecular Biology Laboratory
                     address:
                        name:European Molecular Biology Laboratory, Heidelberg, Germany
                        type:PostalAddress
                     type:Organization
               email:[email protected]
               type:Person
               name:Wolfgang Huber
               affiliation:
                     name:European Molecular Biology Laboratory
                     address:
                        name:European Molecular Biology Laboratory, Heidelberg, Germany
                        type:PostalAddress
                     type:Organization
               type:Person
         isAccessibleForFree:1
         type:ScholarlyArticle
      context:https://schema.org
ScholarlyArticle:
      headline:Differential expression analysis for sequence count data
      description:High-throughput sequencing assays such as RNA-Seq, ChIP-Seq or barcode counting provide quantitative readouts in the form of count data. To infer differential signal in such data correctly and with good statistical power, estimation of data variability throughout the dynamic range and a suitable error model are required. We propose a method based on the negative binomial distribution, with variance and mean linked by local regression and present an implementation, DESeq, as an R/Bioconductor package.
      datePublished:2010-10-27T00:00:00Z
      dateModified:2010-10-27T00:00:00Z
      pageStart:1
      pageEnd:12
      sameAs:https://doi.org/10.1186/gb-2010-11-10-r106
      keywords:
         Shot Noise
         Local Regression
         Negative Binomial Distribution
         Negative Binomial
         Size Factor
         Animal Genetics and Genomics
         Human Genetics
         Plant Genetics and Genomics
         Microbial Genetics and Genomics
         Bioinformatics
         Evolutionary Biology
      image:
         https://media.springernature.com/lw1200/springer-static/image/art%3A10.1186%2Fgb-2010-11-10-r106/MediaObjects/13059_2010_9558_Fig1_HTML.jpg
         https://media.springernature.com/lw1200/springer-static/image/art%3A10.1186%2Fgb-2010-11-10-r106/MediaObjects/13059_2010_9558_Fig2_HTML.jpg
         https://media.springernature.com/lw1200/springer-static/image/art%3A10.1186%2Fgb-2010-11-10-r106/MediaObjects/13059_2010_9558_Fig3_HTML.jpg
         https://media.springernature.com/lw1200/springer-static/image/art%3A10.1186%2Fgb-2010-11-10-r106/MediaObjects/13059_2010_9558_Fig4_HTML.jpg
         https://media.springernature.com/lw1200/springer-static/image/art%3A10.1186%2Fgb-2010-11-10-r106/MediaObjects/13059_2010_9558_Fig5_HTML.jpg
         https://media.springernature.com/lw1200/springer-static/image/art%3A10.1186%2Fgb-2010-11-10-r106/MediaObjects/13059_2010_9558_Fig6_HTML.jpg
         https://media.springernature.com/lw1200/springer-static/image/art%3A10.1186%2Fgb-2010-11-10-r106/MediaObjects/13059_2010_9558_Fig7_HTML.jpg
      isPartOf:
         name:Genome Biology
         issn:
            1474-760X
         volumeNumber:11
         type:
            Periodical
            PublicationVolume
      publisher:
         name:BioMed Central
         logo:
            url:https://www.springernature.com/app-sn/public/images/logo-springernature.png
            type:ImageObject
         type:Organization
      author:
            name:Simon Anders
            affiliation:
                  name:European Molecular Biology Laboratory
                  address:
                     name:European Molecular Biology Laboratory, Heidelberg, Germany
                     type:PostalAddress
                  type:Organization
            email:[email protected]
            type:Person
            name:Wolfgang Huber
            affiliation:
                  name:European Molecular Biology Laboratory
                  address:
                     name:European Molecular Biology Laboratory, Heidelberg, Germany
                     type:PostalAddress
                  type:Organization
            type:Person
      isAccessibleForFree:1
["Periodical","PublicationVolume"]:
      name:Genome Biology
      issn:
         1474-760X
      volumeNumber:11
Organization:
      name:BioMed Central
      logo:
         url:https://www.springernature.com/app-sn/public/images/logo-springernature.png
         type:ImageObject
      name:European Molecular Biology Laboratory
      address:
         name:European Molecular Biology Laboratory, Heidelberg, Germany
         type:PostalAddress
      name:European Molecular Biology Laboratory
      address:
         name:European Molecular Biology Laboratory, Heidelberg, Germany
         type:PostalAddress
ImageObject:
      url:https://www.springernature.com/app-sn/public/images/logo-springernature.png
Person:
      name:Simon Anders
      affiliation:
            name:European Molecular Biology Laboratory
            address:
               name:European Molecular Biology Laboratory, Heidelberg, Germany
               type:PostalAddress
            type:Organization
      email:[email protected]
      name:Wolfgang Huber
      affiliation:
            name:European Molecular Biology Laboratory
            address:
               name:European Molecular Biology Laboratory, Heidelberg, Germany
               type:PostalAddress
            type:Organization
PostalAddress:
      name:European Molecular Biology Laboratory, Heidelberg, Germany
      name:European Molecular Biology Laboratory, Heidelberg, Germany

External Links {πŸ”—}(94)

Analytics and Tracking {πŸ“Š}

  • Google Tag Manager

Libraries {πŸ“š}

  • Clipboard.js
  • Prism.js
  • Zoom.js

CDN Services {πŸ“¦}

  • Crossref

4.78s.