Here's how LINK.SPRINGER.COM makes money* and how much!

*Please read our disclaimer before using our estimates.
Loading...

LINK . SPRINGER . COM {}

  1. Analyzed Page
  2. Matching Content Categories
  3. CMS
  4. Monthly Traffic Estimate
  5. How Does Link.springer.com Make Money
  6. Keywords
  7. Topics
  8. Schema
  9. External Links
  10. Analytics And Tracking
  11. Libraries

We are analyzing https://link.springer.com/article/10.1007/s11517-019-02008-8.

Title:
A deep learning algorithm for one-step contour aware nuclei segmentation of histopathology images | Medical & Biological Engineering & Computing
Description:
This paper addresses the task of nuclei segmentation in high-resolution histopathology images. We propose an automatic end-to-end deep neural network algorithm for segmentation of individual nuclei. A nucleus-boundary model is introduced to predict nuclei and their boundaries simultaneously using a fully convolutional neural network. Given a color-normalized image, the model directly outputs an estimated nuclei map and a boundary map. A simple, fast, and parameter-free post-processing procedure is performed on the estimated nuclei map to produce the final segmented nuclei. An overlapped patch extraction and assembling method is also designed for seamless prediction of nuclei in large whole-slide images. We also show the effectiveness of data augmentation methods for nuclei segmentation task. Our experiments showed our method outperforms prior state-of-the-art methods. Moreover, it is efficient that one 1000Γ—1000 image can be segmented in less than 5 s. This makes it possible to precisely segment the whole-slide image in acceptable time. The source code is available at https://github.com/easycui/nuclei_segmentation .
Website Age:
28 years and 1 months (reg. 1997-05-29).

Matching Content Categories {πŸ“š}

  • Virtual Reality
  • Technology & Computing
  • Science

Content Management System {πŸ“}

What CMS is link.springer.com built with?

Custom-built

No common CMS systems were detected on Link.springer.com, and no known web development framework was identified.

Traffic Estimate {πŸ“ˆ}

What is the average monthly size of link.springer.com audience?

🌠 Phenomenal Traffic: 5M - 10M visitors per month


Based on our best estimate, this website will receive around 5,000,019 visitors per month in the current month.
However, some sources were not loaded, we suggest to reload the page to get complete results.

check SE Ranking
check Ahrefs
check Similarweb
check Ubersuggest
check Semrush

How Does Link.springer.com Make Money? {πŸ’Έ}

We can't tell how the site generates income.

Not all websites are made for profit; some exist to inform or educate users. Or any other reason why people make websites. And this might be the case. Link.springer.com has a revenue plan, but it's either invisible or we haven't found it.

Keywords {πŸ”}

segmentation, article, nuclei, ieee, images, google, scholar, pubmed, histopathology, breast, image, cancer, automatic, neural, deep, learning, international, liu, method, networks, trans, conference, imaging, analysis, data, information, medical, network, convolutional, detection, yang, stained, springer, privacy, cookies, content, cui, zhang, access, computer, publish, research, search, recognition, nuclear, biomed, eng, color, nature, biomedical,

Topics {βœ’οΈ}

parameter-free post-processing procedure month download article/chapter /easycui/nuclei_segmentation/blob/master/license data augmentation methods high-resolution histopathology images automatic learning-based framework fully convolutional networks generalized nuclear segmentation structure-preserved color normalization image-specific color deconvolution medical image computing medical information engineering computer-based image analysis learning deconvolution network computer-aided image analysis deep neural networks robust nucleus segmentation stained histopathology images deep learning algorithm nucleus-boundary model full article pdf deep residual learning normalizing neural networks privacy choices/manage cookies cell images based automated segmentation neural network digital histopathology images pattern recognition health-related quality slide histopathology images automatic nuclei segmentation breast reconstruction timing normalizing histology slides nuclei segmentation approach adjusting nuclei segmentation automatic image segmentation references al-kofahi color-normalized image unsupervised color decomposition model directly outputs visual document analysis related subjects personal data estimated nuclei map european economic area overlapped patch extraction k-means clustering nonlinear mapping approach negative matrix factorization

Schema {πŸ—ΊοΈ}

WebPage:
      mainEntity:
         headline:A deep learning algorithm for one-step contour aware nuclei segmentation of histopathology images
         description:This paper addresses the task of nuclei segmentation in high-resolution histopathology images. We propose an automatic end-to-end deep neural network algorithm for segmentation of individual nuclei. A nucleus-boundary model is introduced to predict nuclei and their boundaries simultaneously using a fully convolutional neural network. Given a color-normalized image, the model directly outputs an estimated nuclei map and a boundary map. A simple, fast, and parameter-free post-processing procedure is performed on the estimated nuclei map to produce the final segmented nuclei. An overlapped patch extraction and assembling method is also designed for seamless prediction of nuclei in large whole-slide images. We also show the effectiveness of data augmentation methods for nuclei segmentation task. Our experiments showed our method outperforms prior state-of-the-art methods. Moreover, it is efficient that one 1000Γ—1000 image can be segmented in less than 5 s. This makes it possible to precisely segment the whole-slide image in acceptable time. The source code is available at https://github.com/easycui/nuclei_segmentation .
         datePublished:2019-07-26T00:00:00Z
         dateModified:2019-07-26T00:00:00Z
         pageStart:2027
         pageEnd:2043
         sameAs:https://doi.org/10.1007/s11517-019-02008-8
         keywords:
            Deep learning
            Nuclei segmentation
            Fully convolutional neural network
            Data augmentation
            Human Physiology
            Biomedical Engineering and Bioengineering
            Imaging / Radiology
            Computer Applications
         image:
            https://media.springernature.com/lw1200/springer-static/image/art%3A10.1007%2Fs11517-019-02008-8/MediaObjects/11517_2019_2008_Figf_HTML.png
            https://media.springernature.com/lw1200/springer-static/image/art%3A10.1007%2Fs11517-019-02008-8/MediaObjects/11517_2019_2008_Fig1_HTML.png
            https://media.springernature.com/lw1200/springer-static/image/art%3A10.1007%2Fs11517-019-02008-8/MediaObjects/11517_2019_2008_Fig2_HTML.png
            https://media.springernature.com/lw1200/springer-static/image/art%3A10.1007%2Fs11517-019-02008-8/MediaObjects/11517_2019_2008_Fig3_HTML.png
            https://media.springernature.com/lw1200/springer-static/image/art%3A10.1007%2Fs11517-019-02008-8/MediaObjects/11517_2019_2008_Fig4_HTML.png
            https://media.springernature.com/lw1200/springer-static/image/art%3A10.1007%2Fs11517-019-02008-8/MediaObjects/11517_2019_2008_Fig5_HTML.png
            https://media.springernature.com/lw1200/springer-static/image/art%3A10.1007%2Fs11517-019-02008-8/MediaObjects/11517_2019_2008_Fig6_HTML.png
            https://media.springernature.com/lw1200/springer-static/image/art%3A10.1007%2Fs11517-019-02008-8/MediaObjects/11517_2019_2008_Fig7_HTML.png
            https://media.springernature.com/lw1200/springer-static/image/art%3A10.1007%2Fs11517-019-02008-8/MediaObjects/11517_2019_2008_Fig8_HTML.png
            https://media.springernature.com/lw1200/springer-static/image/art%3A10.1007%2Fs11517-019-02008-8/MediaObjects/11517_2019_2008_Fig9_HTML.png
            https://media.springernature.com/lw1200/springer-static/image/art%3A10.1007%2Fs11517-019-02008-8/MediaObjects/11517_2019_2008_Fig10_HTML.png
            https://media.springernature.com/lw1200/springer-static/image/art%3A10.1007%2Fs11517-019-02008-8/MediaObjects/11517_2019_2008_Fig11_HTML.png
            https://media.springernature.com/lw1200/springer-static/image/art%3A10.1007%2Fs11517-019-02008-8/MediaObjects/11517_2019_2008_Fig12_HTML.png
            https://media.springernature.com/lw1200/springer-static/image/art%3A10.1007%2Fs11517-019-02008-8/MediaObjects/11517_2019_2008_Fig13_HTML.png
         isPartOf:
            name:Medical & Biological Engineering & Computing
            issn:
               1741-0444
               0140-0118
            volumeNumber:57
            type:
               Periodical
               PublicationVolume
         publisher:
            name:Springer Berlin Heidelberg
            logo:
               url:https://www.springernature.com/app-sn/public/images/logo-springernature.png
               type:ImageObject
            type:Organization
         author:
               name:Yuxin Cui
               affiliation:
                     name:University of South Carolina
                     address:
                        name:Department of Computer Science and Technology, University of South Carolina, Columbia, USA
                        type:PostalAddress
                     type:Organization
               type:Person
               name:Guiying Zhang
               affiliation:
                     name:Zunyi Medical University
                     address:
                        name:Department of Medical Information Engineering, Zunyi Medical University, Zunyi, China
                        type:PostalAddress
                     type:Organization
               type:Person
               name:Zhonghao Liu
               affiliation:
                     name:University of South Carolina
                     address:
                        name:Department of Computer Science and Technology, University of South Carolina, Columbia, USA
                        type:PostalAddress
                     type:Organization
               type:Person
               name:Zheng Xiong
               affiliation:
                     name:University of South Carolina
                     address:
                        name:Department of Computer Science and Technology, University of South Carolina, Columbia, USA
                        type:PostalAddress
                     type:Organization
               type:Person
               name:Jianjun Hu
               url:http://orcid.org/0000-0002-8725-6660
               affiliation:
                     name:University of South Carolina
                     address:
                        name:Department of Computer Science and Technology, University of South Carolina, Columbia, USA
                        type:PostalAddress
                     type:Organization
               email:[email protected]
               type:Person
         isAccessibleForFree:
         hasPart:
            isAccessibleForFree:
            cssSelector:.main-content
            type:WebPageElement
         type:ScholarlyArticle
      context:https://schema.org
ScholarlyArticle:
      headline:A deep learning algorithm for one-step contour aware nuclei segmentation of histopathology images
      description:This paper addresses the task of nuclei segmentation in high-resolution histopathology images. We propose an automatic end-to-end deep neural network algorithm for segmentation of individual nuclei. A nucleus-boundary model is introduced to predict nuclei and their boundaries simultaneously using a fully convolutional neural network. Given a color-normalized image, the model directly outputs an estimated nuclei map and a boundary map. A simple, fast, and parameter-free post-processing procedure is performed on the estimated nuclei map to produce the final segmented nuclei. An overlapped patch extraction and assembling method is also designed for seamless prediction of nuclei in large whole-slide images. We also show the effectiveness of data augmentation methods for nuclei segmentation task. Our experiments showed our method outperforms prior state-of-the-art methods. Moreover, it is efficient that one 1000Γ—1000 image can be segmented in less than 5 s. This makes it possible to precisely segment the whole-slide image in acceptable time. The source code is available at https://github.com/easycui/nuclei_segmentation .
      datePublished:2019-07-26T00:00:00Z
      dateModified:2019-07-26T00:00:00Z
      pageStart:2027
      pageEnd:2043
      sameAs:https://doi.org/10.1007/s11517-019-02008-8
      keywords:
         Deep learning
         Nuclei segmentation
         Fully convolutional neural network
         Data augmentation
         Human Physiology
         Biomedical Engineering and Bioengineering
         Imaging / Radiology
         Computer Applications
      image:
         https://media.springernature.com/lw1200/springer-static/image/art%3A10.1007%2Fs11517-019-02008-8/MediaObjects/11517_2019_2008_Figf_HTML.png
         https://media.springernature.com/lw1200/springer-static/image/art%3A10.1007%2Fs11517-019-02008-8/MediaObjects/11517_2019_2008_Fig1_HTML.png
         https://media.springernature.com/lw1200/springer-static/image/art%3A10.1007%2Fs11517-019-02008-8/MediaObjects/11517_2019_2008_Fig2_HTML.png
         https://media.springernature.com/lw1200/springer-static/image/art%3A10.1007%2Fs11517-019-02008-8/MediaObjects/11517_2019_2008_Fig3_HTML.png
         https://media.springernature.com/lw1200/springer-static/image/art%3A10.1007%2Fs11517-019-02008-8/MediaObjects/11517_2019_2008_Fig4_HTML.png
         https://media.springernature.com/lw1200/springer-static/image/art%3A10.1007%2Fs11517-019-02008-8/MediaObjects/11517_2019_2008_Fig5_HTML.png
         https://media.springernature.com/lw1200/springer-static/image/art%3A10.1007%2Fs11517-019-02008-8/MediaObjects/11517_2019_2008_Fig6_HTML.png
         https://media.springernature.com/lw1200/springer-static/image/art%3A10.1007%2Fs11517-019-02008-8/MediaObjects/11517_2019_2008_Fig7_HTML.png
         https://media.springernature.com/lw1200/springer-static/image/art%3A10.1007%2Fs11517-019-02008-8/MediaObjects/11517_2019_2008_Fig8_HTML.png
         https://media.springernature.com/lw1200/springer-static/image/art%3A10.1007%2Fs11517-019-02008-8/MediaObjects/11517_2019_2008_Fig9_HTML.png
         https://media.springernature.com/lw1200/springer-static/image/art%3A10.1007%2Fs11517-019-02008-8/MediaObjects/11517_2019_2008_Fig10_HTML.png
         https://media.springernature.com/lw1200/springer-static/image/art%3A10.1007%2Fs11517-019-02008-8/MediaObjects/11517_2019_2008_Fig11_HTML.png
         https://media.springernature.com/lw1200/springer-static/image/art%3A10.1007%2Fs11517-019-02008-8/MediaObjects/11517_2019_2008_Fig12_HTML.png
         https://media.springernature.com/lw1200/springer-static/image/art%3A10.1007%2Fs11517-019-02008-8/MediaObjects/11517_2019_2008_Fig13_HTML.png
      isPartOf:
         name:Medical & Biological Engineering & Computing
         issn:
            1741-0444
            0140-0118
         volumeNumber:57
         type:
            Periodical
            PublicationVolume
      publisher:
         name:Springer Berlin Heidelberg
         logo:
            url:https://www.springernature.com/app-sn/public/images/logo-springernature.png
            type:ImageObject
         type:Organization
      author:
            name:Yuxin Cui
            affiliation:
                  name:University of South Carolina
                  address:
                     name:Department of Computer Science and Technology, University of South Carolina, Columbia, USA
                     type:PostalAddress
                  type:Organization
            type:Person
            name:Guiying Zhang
            affiliation:
                  name:Zunyi Medical University
                  address:
                     name:Department of Medical Information Engineering, Zunyi Medical University, Zunyi, China
                     type:PostalAddress
                  type:Organization
            type:Person
            name:Zhonghao Liu
            affiliation:
                  name:University of South Carolina
                  address:
                     name:Department of Computer Science and Technology, University of South Carolina, Columbia, USA
                     type:PostalAddress
                  type:Organization
            type:Person
            name:Zheng Xiong
            affiliation:
                  name:University of South Carolina
                  address:
                     name:Department of Computer Science and Technology, University of South Carolina, Columbia, USA
                     type:PostalAddress
                  type:Organization
            type:Person
            name:Jianjun Hu
            url:http://orcid.org/0000-0002-8725-6660
            affiliation:
                  name:University of South Carolina
                  address:
                     name:Department of Computer Science and Technology, University of South Carolina, Columbia, USA
                     type:PostalAddress
                  type:Organization
            email:[email protected]
            type:Person
      isAccessibleForFree:
      hasPart:
         isAccessibleForFree:
         cssSelector:.main-content
         type:WebPageElement
["Periodical","PublicationVolume"]:
      name:Medical & Biological Engineering & Computing
      issn:
         1741-0444
         0140-0118
      volumeNumber:57
Organization:
      name:Springer Berlin Heidelberg
      logo:
         url:https://www.springernature.com/app-sn/public/images/logo-springernature.png
         type:ImageObject
      name:University of South Carolina
      address:
         name:Department of Computer Science and Technology, University of South Carolina, Columbia, USA
         type:PostalAddress
      name:Zunyi Medical University
      address:
         name:Department of Medical Information Engineering, Zunyi Medical University, Zunyi, China
         type:PostalAddress
      name:University of South Carolina
      address:
         name:Department of Computer Science and Technology, University of South Carolina, Columbia, USA
         type:PostalAddress
      name:University of South Carolina
      address:
         name:Department of Computer Science and Technology, University of South Carolina, Columbia, USA
         type:PostalAddress
      name:University of South Carolina
      address:
         name:Department of Computer Science and Technology, University of South Carolina, Columbia, USA
         type:PostalAddress
ImageObject:
      url:https://www.springernature.com/app-sn/public/images/logo-springernature.png
Person:
      name:Yuxin Cui
      affiliation:
            name:University of South Carolina
            address:
               name:Department of Computer Science and Technology, University of South Carolina, Columbia, USA
               type:PostalAddress
            type:Organization
      name:Guiying Zhang
      affiliation:
            name:Zunyi Medical University
            address:
               name:Department of Medical Information Engineering, Zunyi Medical University, Zunyi, China
               type:PostalAddress
            type:Organization
      name:Zhonghao Liu
      affiliation:
            name:University of South Carolina
            address:
               name:Department of Computer Science and Technology, University of South Carolina, Columbia, USA
               type:PostalAddress
            type:Organization
      name:Zheng Xiong
      affiliation:
            name:University of South Carolina
            address:
               name:Department of Computer Science and Technology, University of South Carolina, Columbia, USA
               type:PostalAddress
            type:Organization
      name:Jianjun Hu
      url:http://orcid.org/0000-0002-8725-6660
      affiliation:
            name:University of South Carolina
            address:
               name:Department of Computer Science and Technology, University of South Carolina, Columbia, USA
               type:PostalAddress
            type:Organization
      email:[email protected]
PostalAddress:
      name:Department of Computer Science and Technology, University of South Carolina, Columbia, USA
      name:Department of Medical Information Engineering, Zunyi Medical University, Zunyi, China
      name:Department of Computer Science and Technology, University of South Carolina, Columbia, USA
      name:Department of Computer Science and Technology, University of South Carolina, Columbia, USA
      name:Department of Computer Science and Technology, University of South Carolina, Columbia, USA
WebPageElement:
      isAccessibleForFree:
      cssSelector:.main-content

External Links {πŸ”—}(86)

Analytics and Tracking {πŸ“Š}

  • Google Tag Manager

Libraries {πŸ“š}

  • Clipboard.js
  • Prism.js

4.06s.