Here's how LINK.SPRINGER.COM makes money* and how much!

*Please read our disclaimer before using our estimates.
Loading...

LINK . SPRINGER . COM {}

  1. Analyzed Page
  2. Matching Content Categories
  3. CMS
  4. Monthly Traffic Estimate
  5. How Does Link.springer.com Make Money
  6. Keywords
  7. Topics
  8. Schema
  9. External Links
  10. Analytics And Tracking
  11. Libraries
  12. CDN Services

We are analyzing https://link.springer.com/article/10.1007/s00894-015-2807-x.

Title:
Understanding the roles of Lys33 and Arg45 in the binding-site stability of LjLTP10, an LTP related to drought stress in Lotus japonicus | Journal of Molecular Modeling
Description:
In Lotus japonicus, as in most plants, long-chain fatty acids are important components of cuticular wax, one of the principal functions of which is to act as a barrier to water loss in response to drought stress. It is thought that lipid transfer proteins (LTPs) are involved in the process of cuticle formation. We previously described LjLTP10 as an LTP involved in cuticle formation during acclimation response to drought stress in L. japonicus. The structural model of LjLTP10 had two residues (K33 and R45) in the hydrophobic cavity, although the role of these residues was unclear. In the present work, we investigated the molecular mechanism involved in the transport of lipid precursors in L. japonicus and clarified the importance of the residues K33 and R45. First, in silico site-directed mutagenesis studies were carried out on the LjLTP10 structure. Structural analysis showed that LjLTP10 mutants possess similar structures but their hydrophobic cavities are somewhat different. Unfavorable energies for the interactions of the mutant proteins with different ligands were found by molecular docking and molecular dynamics simulations. We also examined the contributions of energetic parameters to the free energy of the protein–ligand complex using the MM-GBSA method. Results showed that the different complexes present similar, favorable van der Waals interactions, whereas electrostatic interactions were not favored in the mutant structures. Our study indicates that the residues K33 and R45 play a crucial role in maintaining the binding pocket structure required for lipid transport.
Website Age:
28 years and 1 months (reg. 1997-05-29).

Matching Content Categories {📚}

  • Science
  • Education
  • Books & Literature

Content Management System {📝}

What CMS is link.springer.com built with?

Custom-built

No common CMS systems were detected on Link.springer.com, and no known web development framework was identified.

Traffic Estimate {📈}

What is the average monthly size of link.springer.com audience?

🌠 Phenomenal Traffic: 5M - 10M visitors per month


Based on our best estimate, this website will receive around 5,000,019 visitors per month in the current month.
However, some sources were not loaded, we suggest to reload the page to get complete results.

check SE Ranking
check Ahrefs
check Similarweb
check Ubersuggest
check Semrush

How Does Link.springer.com Make Money? {💸}

We're unsure if the website is profiting.

Not all websites focus on profit; some are designed to educate, connect people, or share useful tools. People create websites for numerous reasons. And this could be one such example. Link.springer.com might be plotting its profit, but the way they're doing it isn't detectable yet.

Keywords {🔍}

article, google, scholar, lipid, cas, protein, transfer, plant, structure, molecular, proteins, nonspecific, mol, binding, japonicus, ljltp, drought, lotus, role, access, stress, tapia, lipidtransfer, biol, chem, privacy, cookies, content, journal, related, moralesquintana, involved, structural, dynamics, biochemistry, physiol, arabidopsis, talca, data, publish, research, search, modeling, stability, valenzuelariffo, parrapalma, plants, fatty, wax, residues,

Topics {✒️}

mm-gbsa method high-resolution x-ray crystallography article valenzuela-riffo month download article/chapter parra-palma acknowledges conicyt long-chain fatty acids specific lipid-transfer protein specific lipid-transfer protein luis morales-quintana molecular dynamics simulations fatty acid-binding proteins high-resolution crystal structure molecular dynamics simulation scalable molecular dynamics visual molecular dynamics lipid transfer protein author information authors plant cell physiology condensed phase simulations mackerell ad jr binding-site stability lipid transfer proteins lipid-transfer proteins lotus japonicus facultad de ingeniería phospholipid transfer protein lotus corniculatus leaves arabidopsis desperado/atwbc11 transporter vpaat1 protein related full article pdf nonspecific lipid binding privacy choices/manage cookies hydrophobic binding site bifunctional lipid-transfer european economic area protein–ligand complex morales-quintana molecular simulations amino acid sequence fungal plant pathogens parra-palma unliganded state reveals dunbrack rl jr check access instant access complexes present similar van gunsteren wf related subjects molecular modeling aims universidad de talca

Schema {🗺️}

WebPage:
      mainEntity:
         headline:Understanding the roles of Lys33 and Arg45 in the binding-site stability of LjLTP10, an LTP related to drought stress in Lotus japonicus
         description:In Lotus japonicus, as in most plants, long-chain fatty acids are important components of cuticular wax, one of the principal functions of which is to act as a barrier to water loss in response to drought stress. It is thought that lipid transfer proteins (LTPs) are involved in the process of cuticle formation. We previously described LjLTP10 as an LTP involved in cuticle formation during acclimation response to drought stress in L. japonicus. The structural model of LjLTP10 had two residues (K33 and R45) in the hydrophobic cavity, although the role of these residues was unclear. In the present work, we investigated the molecular mechanism involved in the transport of lipid precursors in L. japonicus and clarified the importance of the residues K33 and R45. First, in silico site-directed mutagenesis studies were carried out on the LjLTP10 structure. Structural analysis showed that LjLTP10 mutants possess similar structures but their hydrophobic cavities are somewhat different. Unfavorable energies for the interactions of the mutant proteins with different ligands were found by molecular docking and molecular dynamics simulations. We also examined the contributions of energetic parameters to the free energy of the protein–ligand complex using the MM-GBSA method. Results showed that the different complexes present similar, favorable van der Waals interactions, whereas electrostatic interactions were not favored in the mutant structures. Our study indicates that the residues K33 and R45 play a crucial role in maintaining the binding pocket structure required for lipid transport.
         datePublished:2015-09-24T00:00:00Z
         dateModified:2015-09-24T00:00:00Z
         pageStart:1
         pageEnd:11
         sameAs:https://doi.org/10.1007/s00894-015-2807-x
         keywords:
            Lipid transfer protein
            In silico site-directed mutagenesis
            Molecular dynamics simulations
            MM-GBSA
             Lotus japonicus
            Computer Applications in Chemistry
            Molecular Medicine
            Computer Appl. in Life Sciences
            Characterization and Evaluation of Materials
            Theoretical and Computational Chemistry
         image:
            https://media.springernature.com/lw1200/springer-static/image/art%3A10.1007%2Fs00894-015-2807-x/MediaObjects/894_2015_2807_Fig1_HTML.gif
            https://media.springernature.com/lw1200/springer-static/image/art%3A10.1007%2Fs00894-015-2807-x/MediaObjects/894_2015_2807_Fig2_HTML.gif
            https://media.springernature.com/lw1200/springer-static/image/art%3A10.1007%2Fs00894-015-2807-x/MediaObjects/894_2015_2807_Fig3_HTML.gif
            https://media.springernature.com/lw1200/springer-static/image/art%3A10.1007%2Fs00894-015-2807-x/MediaObjects/894_2015_2807_Fig4_HTML.gif
            https://media.springernature.com/lw1200/springer-static/image/art%3A10.1007%2Fs00894-015-2807-x/MediaObjects/894_2015_2807_Fig5_HTML.gif
            https://media.springernature.com/lw1200/springer-static/image/art%3A10.1007%2Fs00894-015-2807-x/MediaObjects/894_2015_2807_Fig6_HTML.gif
         isPartOf:
            name:Journal of Molecular Modeling
            issn:
               0948-5023
               1610-2940
            volumeNumber:21
            type:
               Periodical
               PublicationVolume
         publisher:
            name:Springer Berlin Heidelberg
            logo:
               url:https://www.springernature.com/app-sn/public/images/logo-springernature.png
               type:ImageObject
            type:Organization
         author:
               name:Felipe Valenzuela-Riffo
               affiliation:
                     name:Universidad de Talca
                     address:
                        name:Escuela de Ingeniería en Bioinformática, Facultad de Ingeniería, Universidad de Talca, Talca, Chile
                        type:PostalAddress
                     type:Organization
               type:Person
               name:Gerardo Tapia
               affiliation:
                     name:Instituto de Investigaciones Agropecuarias, INIA-Quilamapu
                     address:
                        name:Unidad de Recursos Genéticos, Instituto de Investigaciones Agropecuarias, INIA-Quilamapu, Chillán, Chile
                        type:PostalAddress
                     type:Organization
               email:[email protected]
               type:Person
               name:Carolina Parra-Palma
               affiliation:
                     name:Universidad de Talca
                     address:
                        name:Laboratorio de Fisiología Vegetal y Genética Molecular, Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
                        type:PostalAddress
                     type:Organization
               type:Person
               name:Luis Morales-Quintana
               affiliation:
                     name:Universidad de Talca
                     address:
                        name:Laboratorio de Fisiología Vegetal y Genética Molecular, Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
                        type:PostalAddress
                     type:Organization
               email:[email protected]
               type:Person
         isAccessibleForFree:
         hasPart:
            isAccessibleForFree:
            cssSelector:.main-content
            type:WebPageElement
         type:ScholarlyArticle
      context:https://schema.org
ScholarlyArticle:
      headline:Understanding the roles of Lys33 and Arg45 in the binding-site stability of LjLTP10, an LTP related to drought stress in Lotus japonicus
      description:In Lotus japonicus, as in most plants, long-chain fatty acids are important components of cuticular wax, one of the principal functions of which is to act as a barrier to water loss in response to drought stress. It is thought that lipid transfer proteins (LTPs) are involved in the process of cuticle formation. We previously described LjLTP10 as an LTP involved in cuticle formation during acclimation response to drought stress in L. japonicus. The structural model of LjLTP10 had two residues (K33 and R45) in the hydrophobic cavity, although the role of these residues was unclear. In the present work, we investigated the molecular mechanism involved in the transport of lipid precursors in L. japonicus and clarified the importance of the residues K33 and R45. First, in silico site-directed mutagenesis studies were carried out on the LjLTP10 structure. Structural analysis showed that LjLTP10 mutants possess similar structures but their hydrophobic cavities are somewhat different. Unfavorable energies for the interactions of the mutant proteins with different ligands were found by molecular docking and molecular dynamics simulations. We also examined the contributions of energetic parameters to the free energy of the protein–ligand complex using the MM-GBSA method. Results showed that the different complexes present similar, favorable van der Waals interactions, whereas electrostatic interactions were not favored in the mutant structures. Our study indicates that the residues K33 and R45 play a crucial role in maintaining the binding pocket structure required for lipid transport.
      datePublished:2015-09-24T00:00:00Z
      dateModified:2015-09-24T00:00:00Z
      pageStart:1
      pageEnd:11
      sameAs:https://doi.org/10.1007/s00894-015-2807-x
      keywords:
         Lipid transfer protein
         In silico site-directed mutagenesis
         Molecular dynamics simulations
         MM-GBSA
          Lotus japonicus
         Computer Applications in Chemistry
         Molecular Medicine
         Computer Appl. in Life Sciences
         Characterization and Evaluation of Materials
         Theoretical and Computational Chemistry
      image:
         https://media.springernature.com/lw1200/springer-static/image/art%3A10.1007%2Fs00894-015-2807-x/MediaObjects/894_2015_2807_Fig1_HTML.gif
         https://media.springernature.com/lw1200/springer-static/image/art%3A10.1007%2Fs00894-015-2807-x/MediaObjects/894_2015_2807_Fig2_HTML.gif
         https://media.springernature.com/lw1200/springer-static/image/art%3A10.1007%2Fs00894-015-2807-x/MediaObjects/894_2015_2807_Fig3_HTML.gif
         https://media.springernature.com/lw1200/springer-static/image/art%3A10.1007%2Fs00894-015-2807-x/MediaObjects/894_2015_2807_Fig4_HTML.gif
         https://media.springernature.com/lw1200/springer-static/image/art%3A10.1007%2Fs00894-015-2807-x/MediaObjects/894_2015_2807_Fig5_HTML.gif
         https://media.springernature.com/lw1200/springer-static/image/art%3A10.1007%2Fs00894-015-2807-x/MediaObjects/894_2015_2807_Fig6_HTML.gif
      isPartOf:
         name:Journal of Molecular Modeling
         issn:
            0948-5023
            1610-2940
         volumeNumber:21
         type:
            Periodical
            PublicationVolume
      publisher:
         name:Springer Berlin Heidelberg
         logo:
            url:https://www.springernature.com/app-sn/public/images/logo-springernature.png
            type:ImageObject
         type:Organization
      author:
            name:Felipe Valenzuela-Riffo
            affiliation:
                  name:Universidad de Talca
                  address:
                     name:Escuela de Ingeniería en Bioinformática, Facultad de Ingeniería, Universidad de Talca, Talca, Chile
                     type:PostalAddress
                  type:Organization
            type:Person
            name:Gerardo Tapia
            affiliation:
                  name:Instituto de Investigaciones Agropecuarias, INIA-Quilamapu
                  address:
                     name:Unidad de Recursos Genéticos, Instituto de Investigaciones Agropecuarias, INIA-Quilamapu, Chillán, Chile
                     type:PostalAddress
                  type:Organization
            email:[email protected]
            type:Person
            name:Carolina Parra-Palma
            affiliation:
                  name:Universidad de Talca
                  address:
                     name:Laboratorio de Fisiología Vegetal y Genética Molecular, Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
                     type:PostalAddress
                  type:Organization
            type:Person
            name:Luis Morales-Quintana
            affiliation:
                  name:Universidad de Talca
                  address:
                     name:Laboratorio de Fisiología Vegetal y Genética Molecular, Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
                     type:PostalAddress
                  type:Organization
            email:[email protected]
            type:Person
      isAccessibleForFree:
      hasPart:
         isAccessibleForFree:
         cssSelector:.main-content
         type:WebPageElement
["Periodical","PublicationVolume"]:
      name:Journal of Molecular Modeling
      issn:
         0948-5023
         1610-2940
      volumeNumber:21
Organization:
      name:Springer Berlin Heidelberg
      logo:
         url:https://www.springernature.com/app-sn/public/images/logo-springernature.png
         type:ImageObject
      name:Universidad de Talca
      address:
         name:Escuela de Ingeniería en Bioinformática, Facultad de Ingeniería, Universidad de Talca, Talca, Chile
         type:PostalAddress
      name:Instituto de Investigaciones Agropecuarias, INIA-Quilamapu
      address:
         name:Unidad de Recursos Genéticos, Instituto de Investigaciones Agropecuarias, INIA-Quilamapu, Chillán, Chile
         type:PostalAddress
      name:Universidad de Talca
      address:
         name:Laboratorio de Fisiología Vegetal y Genética Molecular, Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
         type:PostalAddress
      name:Universidad de Talca
      address:
         name:Laboratorio de Fisiología Vegetal y Genética Molecular, Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
         type:PostalAddress
ImageObject:
      url:https://www.springernature.com/app-sn/public/images/logo-springernature.png
Person:
      name:Felipe Valenzuela-Riffo
      affiliation:
            name:Universidad de Talca
            address:
               name:Escuela de Ingeniería en Bioinformática, Facultad de Ingeniería, Universidad de Talca, Talca, Chile
               type:PostalAddress
            type:Organization
      name:Gerardo Tapia
      affiliation:
            name:Instituto de Investigaciones Agropecuarias, INIA-Quilamapu
            address:
               name:Unidad de Recursos Genéticos, Instituto de Investigaciones Agropecuarias, INIA-Quilamapu, Chillán, Chile
               type:PostalAddress
            type:Organization
      email:[email protected]
      name:Carolina Parra-Palma
      affiliation:
            name:Universidad de Talca
            address:
               name:Laboratorio de Fisiología Vegetal y Genética Molecular, Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
               type:PostalAddress
            type:Organization
      name:Luis Morales-Quintana
      affiliation:
            name:Universidad de Talca
            address:
               name:Laboratorio de Fisiología Vegetal y Genética Molecular, Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
               type:PostalAddress
            type:Organization
      email:[email protected]
PostalAddress:
      name:Escuela de Ingeniería en Bioinformática, Facultad de Ingeniería, Universidad de Talca, Talca, Chile
      name:Unidad de Recursos Genéticos, Instituto de Investigaciones Agropecuarias, INIA-Quilamapu, Chillán, Chile
      name:Laboratorio de Fisiología Vegetal y Genética Molecular, Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
      name:Laboratorio de Fisiología Vegetal y Genética Molecular, Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
WebPageElement:
      isAccessibleForFree:
      cssSelector:.main-content

External Links {🔗}(89)

Analytics and Tracking {📊}

  • Google Tag Manager

Libraries {📚}

  • Clipboard.js
  • Prism.js

CDN Services {📦}

  • Crossref

5.34s.