Here's how LINK.SPRINGER.COM makes money* and how much!

*Please read our disclaimer before using our estimates.
Loading...

LINK . SPRINGER . COM {}

  1. Analyzed Page
  2. Matching Content Categories
  3. CMS
  4. Monthly Traffic Estimate
  5. How Does Link.springer.com Make Money
  6. Keywords
  7. Topics
  8. Questions
  9. Schema
  10. External Links
  11. Analytics And Tracking
  12. Libraries
  13. CDN Services

We are analyzing https://link.springer.com/article/10.1007/s00180-012-0353-x.

Title:
Testing homogeneity of variances with unequal sample sizes | Computational Statistics
Description:
When sample sizes are unequal, problems of heteroscedasticity of the variables given by the absolute deviation from the median arise. This paper studies how the best known heteroscedastic alternatives to the ANOVA F test perform when they are applied to these variables. This procedure leads to testing homoscedasticity in a similar manner to Levene’s (1960) test. The difference is that the ANOVA method used by Levene’s test is non-robust against unequal variances of the parent populations and Levene’s variables may be heteroscedastic. The adjustment proposed by O’Neil and Mathews (Aust Nz J Stat 42:81–100, 2000) is approximated by the Keyes and Levy (J Educ Behav Stat 22:227–236, 1997) adjustment and used to ensure the correct null hypothesis of homoscedasticity. Structural zeros, as defined by Hines and O’Hara Hines (Biometrics 56:451–454, 2000), are eliminated. To reduce the error introduced by the approximate distribution of test statistics, estimated critical values are used. Simulation results show that after applying the Keyes–Levy adjustment, including estimated critical values and removing structural zeros the heteroscedastic tests perform better than Levene’s test. In particular, Brown–Forsythe’s test controls the Type I error rate in all situations considered, although it is slightly less powerful than Welch’s, James’s, and Alexander and Govern’s tests, which perform well, except in highly asymmetric distributions where they are moderately liberal.
Website Age:
28 years and 1 months (reg. 1997-05-29).

Matching Content Categories {📚}

  • Education
  • Automotive
  • Social Networks

Content Management System {📝}

What CMS is link.springer.com built with?

Custom-built

No common CMS systems were detected on Link.springer.com, and no known web development framework was identified.

Traffic Estimate {📈}

What is the average monthly size of link.springer.com audience?

🌠 Phenomenal Traffic: 5M - 10M visitors per month


Based on our best estimate, this website will receive around 5,000,019 visitors per month in the current month.
However, some sources were not loaded, we suggest to reload the page to get complete results.

check SE Ranking
check Ahrefs
check Similarweb
check Ubersuggest
check Semrush

How Does Link.springer.com Make Money? {💸}

We can't figure out the monetization strategy.

Many websites are intended to earn money, but some serve to share ideas or build connections. Websites exist for all kinds of purposes. This might be one of them. Link.springer.com has a secret sauce for making money, but we can't detect it yet.

Keywords {🔍}

article, google, scholar, stat, math, test, mathscinet, variances, tests, variance, anova, educ, levenes, equality, data, comput, analysis, unequal, testing, wilcox, statistics, homogeneity, robust, means, simul, keselman, privacy, cookies, content, sample, sizes, parrafrutos, heteroscedasticity, alternatives, comparison, assoc, heterogeneity, comparing, psychol, publish, research, search, august, heteroscedastic, method, structural, hines, error, estimated, values,

Topics {✒️}

month download article/chapter estimated critical values full article pdf generalizied behrens-fisher problem removing structural zeros monte carlo results robust large-sample tests unequal sample sizes simulation results show small sample behavior robust i-sample analysis structural zeros table 1 type article parra-frutos weighted linear regression privacy choices/manage cookies effect size fixed effects analyses samples sizes hara hines rj sample sizes anova f-test robust alexander-govern anova method crossed effects model wilcox test statistic wilcox rr commun stat-simul 26 commun stat simul european economic area scope submit manuscript correct null hypothesis highly asymmetric distributions meet assumptions underlying feir-walsh bj asymmetric trimming strategies finite-intersection method statistical tests brown-forsythe solution bus eco stat assumption violations revisited rogan jc accepting optional cookies related subjects stanford university press check access methodological research instant access increased power location-scale low power

Questions {❓}

  • Bradley JV (1978) Robustness?
  • Rogan JC, Keselman HJ (1977) Is the ANOVA F-test robust to variance heterogeneity when samples sizes are equal?
  • Wilcox RR (1995) ANOVA: a paradigm for low power and misleading measures of effect size?

Schema {🗺️}

WebPage:
      mainEntity:
         headline:Testing homogeneity of variances with unequal sample sizes
         description: When sample sizes are unequal, problems of heteroscedasticity of the variables given by the absolute deviation from the median arise. This paper studies how the best known heteroscedastic alternatives to the ANOVA F test perform when they are applied to these variables. This procedure leads to testing homoscedasticity in a similar manner to Levene’s (1960) test. The difference is that the ANOVA method used by Levene’s test is non-robust against unequal variances of the parent populations and Levene’s variables may be heteroscedastic. The adjustment proposed by O’Neil and Mathews (Aust Nz J Stat 42:81–100, 2000) is approximated by the Keyes and Levy (J Educ Behav Stat 22:227–236, 1997) adjustment and used to ensure the correct null hypothesis of homoscedasticity. Structural zeros, as defined by Hines and O’Hara Hines (Biometrics 56:451–454, 2000), are eliminated. To reduce the error introduced by the approximate distribution of test statistics, estimated critical values are used. Simulation results show that after applying the Keyes–Levy adjustment, including estimated critical values and removing structural zeros the heteroscedastic tests perform better than Levene’s test. In particular, Brown–Forsythe’s test controls the Type I error rate in all situations considered, although it is slightly less powerful than Welch’s, James’s, and Alexander and Govern’s tests, which perform well, except in highly asymmetric distributions where they are moderately liberal.
         datePublished:2012-08-17T00:00:00Z
         dateModified:2012-08-17T00:00:00Z
         pageStart:1269
         pageEnd:1297
         sameAs:https://doi.org/10.1007/s00180-012-0353-x
         keywords:
            Homoscedasticity tests
            Levene’s test
            Bartlett’s test
            Welch’s test
            Brown and Forsythe’s test
            James’s second-order test
            Alexander and Govern’s test
            Monte Carlo simulation
            Small samples
            Estimated critical values
            Structural zeros
            Statistics
            general
            Probability and Statistics in Computer Science
            Probability Theory and Stochastic Processes
            Economic Theory/Quantitative Economics/Mathematical Methods
         image:
            https://media.springernature.com/lw1200/springer-static/image/art%3A10.1007%2Fs00180-012-0353-x/MediaObjects/180_2012_353_Fig1_HTML.gif
            https://media.springernature.com/lw1200/springer-static/image/art%3A10.1007%2Fs00180-012-0353-x/MediaObjects/180_2012_353_Fig2_HTML.gif
            https://media.springernature.com/lw1200/springer-static/image/art%3A10.1007%2Fs00180-012-0353-x/MediaObjects/180_2012_353_Fig3_HTML.gif
            https://media.springernature.com/lw1200/springer-static/image/art%3A10.1007%2Fs00180-012-0353-x/MediaObjects/180_2012_353_Fig4_HTML.gif
            https://media.springernature.com/lw1200/springer-static/image/art%3A10.1007%2Fs00180-012-0353-x/MediaObjects/180_2012_353_Fig5_HTML.gif
            https://media.springernature.com/lw1200/springer-static/image/art%3A10.1007%2Fs00180-012-0353-x/MediaObjects/180_2012_353_Fig6_HTML.gif
            https://media.springernature.com/lw1200/springer-static/image/art%3A10.1007%2Fs00180-012-0353-x/MediaObjects/180_2012_353_Fig7_HTML.gif
            https://media.springernature.com/lw1200/springer-static/image/art%3A10.1007%2Fs00180-012-0353-x/MediaObjects/180_2012_353_Fig8_HTML.gif
            https://media.springernature.com/lw1200/springer-static/image/art%3A10.1007%2Fs00180-012-0353-x/MediaObjects/180_2012_353_Fig9_HTML.gif
            https://media.springernature.com/lw1200/springer-static/image/art%3A10.1007%2Fs00180-012-0353-x/MediaObjects/180_2012_353_Fig10_HTML.gif
            https://media.springernature.com/lw1200/springer-static/image/art%3A10.1007%2Fs00180-012-0353-x/MediaObjects/180_2012_353_Fig11_HTML.gif
            https://media.springernature.com/lw1200/springer-static/image/art%3A10.1007%2Fs00180-012-0353-x/MediaObjects/180_2012_353_Fig12_HTML.gif
            https://media.springernature.com/lw1200/springer-static/image/art%3A10.1007%2Fs00180-012-0353-x/MediaObjects/180_2012_353_Fig13_HTML.gif
            https://media.springernature.com/lw1200/springer-static/image/art%3A10.1007%2Fs00180-012-0353-x/MediaObjects/180_2012_353_Fig14_HTML.gif
         isPartOf:
            name:Computational Statistics
            issn:
               1613-9658
               0943-4062
            volumeNumber:28
            type:
               Periodical
               PublicationVolume
         publisher:
            name:Springer-Verlag
            logo:
               url:https://www.springernature.com/app-sn/public/images/logo-springernature.png
               type:ImageObject
            type:Organization
         author:
               name:I. Parra-Frutos
               affiliation:
                     name:University of Murcia
                     address:
                        name:Department of Quantitative Methods for Economics and Business, Economics and Business School, University of Murcia, Murcia, Spain
                        type:PostalAddress
                     type:Organization
               email:[email protected]
               type:Person
         isAccessibleForFree:
         hasPart:
            isAccessibleForFree:
            cssSelector:.main-content
            type:WebPageElement
         type:ScholarlyArticle
      context:https://schema.org
ScholarlyArticle:
      headline:Testing homogeneity of variances with unequal sample sizes
      description: When sample sizes are unequal, problems of heteroscedasticity of the variables given by the absolute deviation from the median arise. This paper studies how the best known heteroscedastic alternatives to the ANOVA F test perform when they are applied to these variables. This procedure leads to testing homoscedasticity in a similar manner to Levene’s (1960) test. The difference is that the ANOVA method used by Levene’s test is non-robust against unequal variances of the parent populations and Levene’s variables may be heteroscedastic. The adjustment proposed by O’Neil and Mathews (Aust Nz J Stat 42:81–100, 2000) is approximated by the Keyes and Levy (J Educ Behav Stat 22:227–236, 1997) adjustment and used to ensure the correct null hypothesis of homoscedasticity. Structural zeros, as defined by Hines and O’Hara Hines (Biometrics 56:451–454, 2000), are eliminated. To reduce the error introduced by the approximate distribution of test statistics, estimated critical values are used. Simulation results show that after applying the Keyes–Levy adjustment, including estimated critical values and removing structural zeros the heteroscedastic tests perform better than Levene’s test. In particular, Brown–Forsythe’s test controls the Type I error rate in all situations considered, although it is slightly less powerful than Welch’s, James’s, and Alexander and Govern’s tests, which perform well, except in highly asymmetric distributions where they are moderately liberal.
      datePublished:2012-08-17T00:00:00Z
      dateModified:2012-08-17T00:00:00Z
      pageStart:1269
      pageEnd:1297
      sameAs:https://doi.org/10.1007/s00180-012-0353-x
      keywords:
         Homoscedasticity tests
         Levene’s test
         Bartlett’s test
         Welch’s test
         Brown and Forsythe’s test
         James’s second-order test
         Alexander and Govern’s test
         Monte Carlo simulation
         Small samples
         Estimated critical values
         Structural zeros
         Statistics
         general
         Probability and Statistics in Computer Science
         Probability Theory and Stochastic Processes
         Economic Theory/Quantitative Economics/Mathematical Methods
      image:
         https://media.springernature.com/lw1200/springer-static/image/art%3A10.1007%2Fs00180-012-0353-x/MediaObjects/180_2012_353_Fig1_HTML.gif
         https://media.springernature.com/lw1200/springer-static/image/art%3A10.1007%2Fs00180-012-0353-x/MediaObjects/180_2012_353_Fig2_HTML.gif
         https://media.springernature.com/lw1200/springer-static/image/art%3A10.1007%2Fs00180-012-0353-x/MediaObjects/180_2012_353_Fig3_HTML.gif
         https://media.springernature.com/lw1200/springer-static/image/art%3A10.1007%2Fs00180-012-0353-x/MediaObjects/180_2012_353_Fig4_HTML.gif
         https://media.springernature.com/lw1200/springer-static/image/art%3A10.1007%2Fs00180-012-0353-x/MediaObjects/180_2012_353_Fig5_HTML.gif
         https://media.springernature.com/lw1200/springer-static/image/art%3A10.1007%2Fs00180-012-0353-x/MediaObjects/180_2012_353_Fig6_HTML.gif
         https://media.springernature.com/lw1200/springer-static/image/art%3A10.1007%2Fs00180-012-0353-x/MediaObjects/180_2012_353_Fig7_HTML.gif
         https://media.springernature.com/lw1200/springer-static/image/art%3A10.1007%2Fs00180-012-0353-x/MediaObjects/180_2012_353_Fig8_HTML.gif
         https://media.springernature.com/lw1200/springer-static/image/art%3A10.1007%2Fs00180-012-0353-x/MediaObjects/180_2012_353_Fig9_HTML.gif
         https://media.springernature.com/lw1200/springer-static/image/art%3A10.1007%2Fs00180-012-0353-x/MediaObjects/180_2012_353_Fig10_HTML.gif
         https://media.springernature.com/lw1200/springer-static/image/art%3A10.1007%2Fs00180-012-0353-x/MediaObjects/180_2012_353_Fig11_HTML.gif
         https://media.springernature.com/lw1200/springer-static/image/art%3A10.1007%2Fs00180-012-0353-x/MediaObjects/180_2012_353_Fig12_HTML.gif
         https://media.springernature.com/lw1200/springer-static/image/art%3A10.1007%2Fs00180-012-0353-x/MediaObjects/180_2012_353_Fig13_HTML.gif
         https://media.springernature.com/lw1200/springer-static/image/art%3A10.1007%2Fs00180-012-0353-x/MediaObjects/180_2012_353_Fig14_HTML.gif
      isPartOf:
         name:Computational Statistics
         issn:
            1613-9658
            0943-4062
         volumeNumber:28
         type:
            Periodical
            PublicationVolume
      publisher:
         name:Springer-Verlag
         logo:
            url:https://www.springernature.com/app-sn/public/images/logo-springernature.png
            type:ImageObject
         type:Organization
      author:
            name:I. Parra-Frutos
            affiliation:
                  name:University of Murcia
                  address:
                     name:Department of Quantitative Methods for Economics and Business, Economics and Business School, University of Murcia, Murcia, Spain
                     type:PostalAddress
                  type:Organization
            email:[email protected]
            type:Person
      isAccessibleForFree:
      hasPart:
         isAccessibleForFree:
         cssSelector:.main-content
         type:WebPageElement
["Periodical","PublicationVolume"]:
      name:Computational Statistics
      issn:
         1613-9658
         0943-4062
      volumeNumber:28
Organization:
      name:Springer-Verlag
      logo:
         url:https://www.springernature.com/app-sn/public/images/logo-springernature.png
         type:ImageObject
      name:University of Murcia
      address:
         name:Department of Quantitative Methods for Economics and Business, Economics and Business School, University of Murcia, Murcia, Spain
         type:PostalAddress
ImageObject:
      url:https://www.springernature.com/app-sn/public/images/logo-springernature.png
Person:
      name:I. Parra-Frutos
      affiliation:
            name:University of Murcia
            address:
               name:Department of Quantitative Methods for Economics and Business, Economics and Business School, University of Murcia, Murcia, Spain
               type:PostalAddress
            type:Organization
      email:[email protected]
PostalAddress:
      name:Department of Quantitative Methods for Economics and Business, Economics and Business School, University of Murcia, Murcia, Spain
WebPageElement:
      isAccessibleForFree:
      cssSelector:.main-content

External Links {🔗}(174)

Analytics and Tracking {📊}

  • Google Tag Manager

Libraries {📚}

  • Clipboard.js
  • Prism.js

CDN Services {📦}

  • Crossref

4.46s.