Here's how GITHUB.COM makes money* and how much!

*Please read our disclaimer before using our estimates.
Loading...

GITHUB . COM {}

Detected CMS Systems:

  1. Analyzed Page
  2. Matching Content Categories
  3. CMS
  4. Monthly Traffic Estimate
  5. How Does Github.com Make Money
  6. How Much Does Github.com Make
  7. Wordpress Themes And Plugins
  8. Keywords
  9. Topics
  10. Payment Methods
  11. Questions
  12. Schema
  13. External Links
  14. Analytics And Tracking
  15. Libraries
  16. Hosting Providers

We are analyzing https://github.com/pydantic/pydantic/issues/1812.

Title:
Add a standalone implementation for parse_raw similar to parse_file_as and parse_obj_as Β· Issue #1812 Β· pydantic/pydantic
Description:
Feature Request As described in the docs: Pydantic includes a standalone utility function parse_obj_as that can be used to apply the parsing logic used to populate pydantic models in a more ad-hoc way. This function behaves similarly to ...
Website Age:
17 years and 8 months (reg. 2007-10-09).

Matching Content Categories {πŸ“š}

  • Technology & Computing
  • Virtual Reality
  • Mobile Technology & AI

Content Management System {πŸ“}

What CMS is github.com built with?


Github.com uses WORDPRESS.

Traffic Estimate {πŸ“ˆ}

What is the average monthly size of github.com audience?

πŸš€πŸŒ  Tremendous Traffic: 10M - 20M visitors per month


Based on our best estimate, this website will receive around 10,000,019 visitors per month in the current month.
However, some sources were not loaded, we suggest to reload the page to get complete results.

check SE Ranking
check Ahrefs
check Similarweb
check Ubersuggest
check Semrush

How Does Github.com Make Money? {πŸ’Έ}


Subscription Packages {πŸ’³}

We've located a dedicated page on github.com that might include details about subscription plans or recurring payments. We identified it based on the word pricing in one of its internal links. Below, you'll find additional estimates for its monthly recurring revenues.

How Much Does Github.com Make? {πŸ’°}


Subscription Packages {πŸ’³}

Prices on github.com are in US Dollars ($). They range from $4.00/month to $21.00/month.
We estimate that the site has approximately 4,989,889 paying customers.
The estimated monthly recurring revenue (MRR) is $20,957,532.
The estimated annual recurring revenues (ARR) are $251,490,385.

Wordpress Themes and Plugins {🎨}

What WordPress theme does this site use?

It is strange but we were not able to detect any theme on the page.

What WordPress plugins does this website use?

It is strange but we were not able to detect any plugins on the page.

Keywords {πŸ”}

pydantic, add, parseobjas, issue, itemdata, prettywood, sign, standalone, similar, function, import, item, parserawas, parsefileas, feature, request, items, added, feattools, navigation, code, pull, requests, actions, security, implementation, parseraw, closed, masternk, docs, utility, works, enabling, parseobjaslistitem, object, raw, parse, json, itemdataobj, commit, references, util, samuelcolvin, github, type, projects, milestone, footer, skip, content,

Topics {βœ’οΈ}

arbitrary pydantic-compatible types add `parse_raw_as` util 645b814 prettywood mentioned personal information add prettywood added function behaves similarly populate pydantic models comment metadata assignees standalone parse function pydantic import basemodel typing import list enabling code verified 75859a9 sign pydantic includes docs type projects standalone implementation items = parse_obj_as list[item] parsing logic ad-hoc raw string raw data projects milestone milestone relationships parse_raw similar github similar parse_file_as parse_obj_as item_data items parse item' item similar basemodel feat sign item_data_obj enabling id id=1 parse_file_as skip jump apply parse_obj works int print

Payment Methods {πŸ“Š}

  • Braintree

Questions {❓}

  • Already have an account?

Schema {πŸ—ΊοΈ}

DiscussionForumPosting:
      context:https://schema.org
      headline:Add a standalone implementation for parse_raw similar to parse_file_as and parse_obj_as
      articleBody:# Feature Request As described in the [docs](https://pydantic-docs.helpmanual.io/usage/models/#parsing-data-into-a-specified-type): > Pydantic includes a standalone utility function parse_obj_as that can be used to apply the parsing logic used to populate pydantic models in a more ad-hoc way. This function behaves similarly to BaseModel.parse_obj, but works with arbitrary pydantic-compatible types. Enabling code such as this: ```py from typing import List from pydantic import BaseModel, parse_obj_as class Item(BaseModel): id: int name: str item_data = [{'id': 1, 'name': 'My Item'}] items = parse_obj_as(List[Item], item_data) print(items) #> [Item(id=1, name='My Item')] ``` This works if you have a given object () to start with, but if you have a raw string or bytes you are required to parse them first into an object. Forcing you to write this: ```py import json item_data = '[{"id": 1, "name": "My Item"}]' item_data_obj = json.loads(item_data) items = parse_obj_as(List[Item], item_data_obj) ``` Instead, I suggest a standalone parse function, similar to `parse_obj_as` but for raw data, enabling something like this: ```py import json item_data = '[{"id": 1, "name": "My Item"}]' items = parse_raw_as(List[Item], item_data) ```
      author:
         url:https://github.com/mastern2k3
         type:Person
         name:mastern2k3
      datePublished:2020-08-09T14:16:59.000Z
      interactionStatistic:
         type:InteractionCounter
         interactionType:https://schema.org/CommentAction
         userInteractionCount:1
      url:https://github.com/1812/pydantic/issues/1812
      context:https://schema.org
      headline:Add a standalone implementation for parse_raw similar to parse_file_as and parse_obj_as
      articleBody:# Feature Request As described in the [docs](https://pydantic-docs.helpmanual.io/usage/models/#parsing-data-into-a-specified-type): > Pydantic includes a standalone utility function parse_obj_as that can be used to apply the parsing logic used to populate pydantic models in a more ad-hoc way. This function behaves similarly to BaseModel.parse_obj, but works with arbitrary pydantic-compatible types. Enabling code such as this: ```py from typing import List from pydantic import BaseModel, parse_obj_as class Item(BaseModel): id: int name: str item_data = [{'id': 1, 'name': 'My Item'}] items = parse_obj_as(List[Item], item_data) print(items) #> [Item(id=1, name='My Item')] ``` This works if you have a given object () to start with, but if you have a raw string or bytes you are required to parse them first into an object. Forcing you to write this: ```py import json item_data = '[{"id": 1, "name": "My Item"}]' item_data_obj = json.loads(item_data) items = parse_obj_as(List[Item], item_data_obj) ``` Instead, I suggest a standalone parse function, similar to `parse_obj_as` but for raw data, enabling something like this: ```py import json item_data = '[{"id": 1, "name": "My Item"}]' items = parse_raw_as(List[Item], item_data) ```
      author:
         url:https://github.com/mastern2k3
         type:Person
         name:mastern2k3
      datePublished:2020-08-09T14:16:59.000Z
      interactionStatistic:
         type:InteractionCounter
         interactionType:https://schema.org/CommentAction
         userInteractionCount:1
      url:https://github.com/1812/pydantic/issues/1812
Person:
      url:https://github.com/mastern2k3
      name:mastern2k3
      url:https://github.com/mastern2k3
      name:mastern2k3
InteractionCounter:
      interactionType:https://schema.org/CommentAction
      userInteractionCount:1
      interactionType:https://schema.org/CommentAction
      userInteractionCount:1

Analytics and Tracking {πŸ“Š}

  • Site Verification - Google

Libraries {πŸ“š}

  • Clipboard.js
  • D3.js
  • Lodash

Emails and Hosting {βœ‰οΈ}

Mail Servers:

  • aspmx.l.google.com
  • alt1.aspmx.l.google.com
  • alt2.aspmx.l.google.com
  • alt3.aspmx.l.google.com
  • alt4.aspmx.l.google.com

Name Servers:

  • dns1.p08.nsone.net
  • dns2.p08.nsone.net
  • dns3.p08.nsone.net
  • dns4.p08.nsone.net
  • ns-1283.awsdns-32.org
  • ns-1707.awsdns-21.co.uk
  • ns-421.awsdns-52.com
  • ns-520.awsdns-01.net
8.42s.