
GITHUB . COM {
}
Detected CMS Systems:
- Wordpress (2 occurrences)
Title:
Add a standalone implementation for parse_raw similar to parse_file_as and parse_obj_as Β· Issue #1812 Β· pydantic/pydantic
Description:
Feature Request As described in the docs: Pydantic includes a standalone utility function parse_obj_as that can be used to apply the parsing logic used to populate pydantic models in a more ad-hoc way. This function behaves similarly to ...
Website Age:
17 years and 8 months (reg. 2007-10-09).
Matching Content Categories {π}
- Technology & Computing
- Virtual Reality
- Mobile Technology & AI
Content Management System {π}
What CMS is github.com built with?
Github.com uses WORDPRESS.
Traffic Estimate {π}
What is the average monthly size of github.com audience?
ππ Tremendous Traffic: 10M - 20M visitors per month
Based on our best estimate, this website will receive around 10,000,019 visitors per month in the current month.
However, some sources were not loaded, we suggest to reload the page to get complete results.
check SE Ranking
check Ahrefs
check Similarweb
check Ubersuggest
check Semrush
How Does Github.com Make Money? {πΈ}
Subscription Packages {π³}
We've located a dedicated page on github.com that might include details about subscription plans or recurring payments. We identified it based on the word pricing in one of its internal links. Below, you'll find additional estimates for its monthly recurring revenues.How Much Does Github.com Make? {π°}
Subscription Packages {π³}
Prices on github.com are in US Dollars ($).
They range from $4.00/month to $21.00/month.
We estimate that the site has approximately 4,989,889 paying customers.
The estimated monthly recurring revenue (MRR) is $20,957,532.
The estimated annual recurring revenues (ARR) are $251,490,385.
Wordpress Themes and Plugins {π¨}
What WordPress theme does this site use?
It is strange but we were not able to detect any theme on the page.
What WordPress plugins does this website use?
It is strange but we were not able to detect any plugins on the page.
Keywords {π}
pydantic, add, parseobjas, issue, itemdata, prettywood, sign, standalone, similar, function, import, item, parserawas, parsefileas, feature, request, items, added, feattools, navigation, code, pull, requests, actions, security, implementation, parseraw, closed, masternk, docs, utility, works, enabling, parseobjaslistitem, object, raw, parse, json, itemdataobj, commit, references, util, samuelcolvin, github, type, projects, milestone, footer, skip, content,
Topics {βοΈ}
arbitrary pydantic-compatible types add `parse_raw_as` util 645b814 prettywood mentioned personal information add prettywood added function behaves similarly populate pydantic models comment metadata assignees standalone parse function pydantic import basemodel typing import list enabling code verified 75859a9 sign pydantic includes docs type projects standalone implementation items = parse_obj_as list[item] parsing logic ad-hoc raw string raw data projects milestone milestone relationships parse_raw similar github similar parse_file_as parse_obj_as item_data items parse item' item similar basemodel feat sign item_data_obj enabling id id=1 parse_file_as skip jump apply parse_obj works int print
Payment Methods {π}
- Braintree
Questions {β}
- Already have an account?
Schema {πΊοΈ}
DiscussionForumPosting:
context:https://schema.org
headline:Add a standalone implementation for parse_raw similar to parse_file_as and parse_obj_as
articleBody:# Feature Request
As described in the [docs](https://pydantic-docs.helpmanual.io/usage/models/#parsing-data-into-a-specified-type):
> Pydantic includes a standalone utility function parse_obj_as that can be used to apply the parsing logic used to populate pydantic models in a more ad-hoc way. This function behaves similarly to BaseModel.parse_obj, but works with arbitrary pydantic-compatible types.
Enabling code such as this:
```py
from typing import List
from pydantic import BaseModel, parse_obj_as
class Item(BaseModel):
id: int
name: str
item_data = [{'id': 1, 'name': 'My Item'}]
items = parse_obj_as(List[Item], item_data)
print(items)
#> [Item(id=1, name='My Item')]
```
This works if you have a given object () to start with, but if you have a raw string or bytes you are required to parse them first into an object.
Forcing you to write this:
```py
import json
item_data = '[{"id": 1, "name": "My Item"}]'
item_data_obj = json.loads(item_data)
items = parse_obj_as(List[Item], item_data_obj)
```
Instead, I suggest a standalone parse function, similar to `parse_obj_as` but for raw data, enabling something like this:
```py
import json
item_data = '[{"id": 1, "name": "My Item"}]'
items = parse_raw_as(List[Item], item_data)
```
author:
url:https://github.com/mastern2k3
type:Person
name:mastern2k3
datePublished:2020-08-09T14:16:59.000Z
interactionStatistic:
type:InteractionCounter
interactionType:https://schema.org/CommentAction
userInteractionCount:1
url:https://github.com/1812/pydantic/issues/1812
context:https://schema.org
headline:Add a standalone implementation for parse_raw similar to parse_file_as and parse_obj_as
articleBody:# Feature Request
As described in the [docs](https://pydantic-docs.helpmanual.io/usage/models/#parsing-data-into-a-specified-type):
> Pydantic includes a standalone utility function parse_obj_as that can be used to apply the parsing logic used to populate pydantic models in a more ad-hoc way. This function behaves similarly to BaseModel.parse_obj, but works with arbitrary pydantic-compatible types.
Enabling code such as this:
```py
from typing import List
from pydantic import BaseModel, parse_obj_as
class Item(BaseModel):
id: int
name: str
item_data = [{'id': 1, 'name': 'My Item'}]
items = parse_obj_as(List[Item], item_data)
print(items)
#> [Item(id=1, name='My Item')]
```
This works if you have a given object () to start with, but if you have a raw string or bytes you are required to parse them first into an object.
Forcing you to write this:
```py
import json
item_data = '[{"id": 1, "name": "My Item"}]'
item_data_obj = json.loads(item_data)
items = parse_obj_as(List[Item], item_data_obj)
```
Instead, I suggest a standalone parse function, similar to `parse_obj_as` but for raw data, enabling something like this:
```py
import json
item_data = '[{"id": 1, "name": "My Item"}]'
items = parse_raw_as(List[Item], item_data)
```
author:
url:https://github.com/mastern2k3
type:Person
name:mastern2k3
datePublished:2020-08-09T14:16:59.000Z
interactionStatistic:
type:InteractionCounter
interactionType:https://schema.org/CommentAction
userInteractionCount:1
url:https://github.com/1812/pydantic/issues/1812
Person:
url:https://github.com/mastern2k3
name:mastern2k3
url:https://github.com/mastern2k3
name:mastern2k3
InteractionCounter:
interactionType:https://schema.org/CommentAction
userInteractionCount:1
interactionType:https://schema.org/CommentAction
userInteractionCount:1
External Links {π}(3)
Analytics and Tracking {π}
- Site Verification - Google
Libraries {π}
- Clipboard.js
- D3.js
- Lodash
Emails and Hosting {βοΈ}
Mail Servers:
- aspmx.l.google.com
- alt1.aspmx.l.google.com
- alt2.aspmx.l.google.com
- alt3.aspmx.l.google.com
- alt4.aspmx.l.google.com
Name Servers:
- dns1.p08.nsone.net
- dns2.p08.nsone.net
- dns3.p08.nsone.net
- dns4.p08.nsone.net
- ns-1283.awsdns-32.org
- ns-1707.awsdns-21.co.uk
- ns-421.awsdns-52.com
- ns-520.awsdns-01.net