Here's how GITHUB.COM makes money* and how much!

*Please read our disclaimer before using our estimates.
Loading...

GITHUB . COM {}

Detected CMS Systems:

  1. Analyzed Page
  2. Matching Content Categories
  3. CMS
  4. Monthly Traffic Estimate
  5. How Does Github.com Make Money
  6. How Much Does Github.com Make
  7. Wordpress Themes And Plugins
  8. Keywords
  9. Topics
  10. Payment Methods
  11. Questions
  12. Schema
  13. External Links
  14. Analytics And Tracking
  15. Libraries
  16. Hosting Providers

We are analyzing https://github.com/pandas-dev/pandas/issues/48951.

Title:
BUG: 'Series.to_numpy(dtype=, na_value=)' behaves differently with 'pd.NA' and 'np.nan' Β· Issue #48951 Β· pandas-dev/pandas
Description:
Pandas version checks I have checked that this issue has not already been reported. I have confirmed this bug exists on the latest version of pandas. I have confirmed this bug exists on the main branch of pandas. Reproducible Example imp...
Website Age:
17 years and 8 months (reg. 2007-10-09).

Matching Content Categories {πŸ“š}

  • Technology & Computing
  • Video & Online Content
  • Education

Content Management System {πŸ“}

What CMS is github.com built with?


Github.com is based on WORDPRESS.

Traffic Estimate {πŸ“ˆ}

What is the average monthly size of github.com audience?

πŸš€πŸŒ  Tremendous Traffic: 10M - 20M visitors per month


Based on our best estimate, this website will receive around 10,653,780 visitors per month in the current month.

check SE Ranking
check Ahrefs
check Similarweb
check Ubersuggest
check Semrush

How Does Github.com Make Money? {πŸ’Έ}


Subscription Packages {πŸ’³}

We've located a dedicated page on github.com that might include details about subscription plans or recurring payments. We identified it based on the word pricing in one of its internal links. Below, you'll find additional estimates for its monthly recurring revenues.

How Much Does Github.com Make? {πŸ’°}


Subscription Packages {πŸ’³}

Prices on github.com are in US Dollars ($). They range from $4.00/month to $21.00/month.
We estimate that the site has approximately 5,316,107 paying customers.
The estimated monthly recurring revenue (MRR) is $22,327,651.
The estimated annual recurring revenues (ARR) are $267,931,808.

Wordpress Themes and Plugins {🎨}

What WordPress theme does this site use?

It is strange but we were not able to detect any theme on the page.

What WordPress plugins does this website use?

It is strange but we were not able to detect any plugins on the page.

Keywords {πŸ”}

navalue, pdna, pandas, bug, issue, pdseries, line, npnan, typeerror, marcogorelli, printxtonumpyint, file, argument, member, commented, sign, seriestonumpydtype, tonumpy, result, npasarrayselfvalues, dtypedtype, string, number, natype, projects, behaves, differently, traceback, recent, call, float, fails, phofl, copy, related, nullable, type, array, baloe, navigation, open, pull, requests, actions, security, closed, description, bbassetttibco, version, confirmed,

Topics {βœ’οΈ}

src\venv\w310\lib\site-packages\pandas\core\base file ~/pandas-dev/pandas/core/base pandas/pandas/core/base integer-type pandas data 'natype' issue description nullable extension arrays personal information bug comment metadata assignees import pandas type projects fourth 'float64' case latest version represent missing values marcogorelli mentioned nullable type lib pd import numpy baloe edits open projects milestone bug exists pandas triage issue phofl mentioned objecttypeseries = floattypeseries result = np ' behaves differently main branch recent call raised exception exception raises related converting milestone relationships dtype=object real number print statements github dtype='float64' dtype=dtype bug issue floattypeseries 'natype' print respecting na_value x2 = pd dtype=float na_value=np na fails expected behavior

Payment Methods {πŸ“Š}

  • Braintree

Questions {❓}

  • Already have an account?
  • Could you post this in #48891?
  • Is it a problem with numpy?
  • NA is experimental ?

Schema {πŸ—ΊοΈ}

DiscussionForumPosting:
      context:https://schema.org
      headline:BUG: 'Series.to_numpy(dtype=, na_value=)' behaves differently with 'pd.NA' and 'np.nan'
      articleBody:### Pandas version checks - [X] I have checked that this issue has not already been reported. - [X] I have confirmed this bug exists on the [latest version](https://pandas.pydata.org/docs/whatsnew/index.html) of pandas. - [ ] I have confirmed this bug exists on the main branch of pandas. ### Reproducible Example ```python import pandas as pd import numpy as np x1 = pd.Series([1, 2, None, 4]) x2 = pd.Series([1, 2, np.nan, 4]) x3 = pd.Series([1, 2, pd.NA, 4]) print(x1.to_numpy('int32', na_value=0)) # [1 2 0 4] print(x2.to_numpy('int32', na_value=0)) # [1 2 0 4] print(x3.to_numpy('int32', na_value=0)) # Traceback (most recent call last): # File "<input>", line 14, in <module> # print(x3.to_numpy('int32', na_value=0)) # File "C:\src\venv\w310\lib\site-packages\pandas\core\base.py", line 535, in to_numpy # result = np.asarray(self._values, dtype=dtype) # TypeError: int() argument must be a string, a bytes-like object or a real number, not 'NAType' print(x3.to_numpy('float64', na_value=0)) # Traceback (most recent call last): # File "<input>", line 22, in <module> # print(x3.to_numpy('float64', na_value=0)) # File "C:\src\venv\w310\lib\site-packages\pandas\core\base.py", line 535, in to_numpy # result = np.asarray(self._values, dtype=dtype) # TypeError: float() argument must be a string or a real number, not 'NAType' ``` ### Issue Description It appears that a Series that has a missing value that was created using either `None` or `np.nan` can be replaced by using `Series.to_numpy(dtype=, na_value=)`, but one created with `pd.NA` fails with a raised exception (both arguments must be specified to trigger the behavior). ### Expected Behavior It is expected that since all three values (`None`, `np.nan`, and `pd.NA`) all represent missing values, that all three should behave the same. For the above reproducible example, the print statements should all report `[1 2 0 4]` (or `[1. 2. 0. 4.]` for the fourth 'float64' case). ### Installed Versions <details> INSTALLED VERSIONS ------------------ commit : 87cfe4e38bafe7300a6003a1d18bd80f3f77c763 python : 3.10.6.final.0 python-bits : 64 OS : Windows OS-release : 10 Version : 10.0.19043 machine : AMD64 processor : Intel64 Family 6 Model 158 Stepping 13, GenuineIntel byteorder : little LC_ALL : None LANG : None LOCALE : English_United States.1252 pandas : 1.5.0 numpy : 1.23.3 pytz : 2022.2.1 dateutil : 2.8.2 setuptools : 65.3.0 pip : 22.2.2 Cython : 0.29.32 pytest : None hypothesis : None sphinx : None blosc : None feather : None xlsxwriter : None lxml.etree : 4.9.1 html5lib : None pymysql : None psycopg2 : None jinja2 : None IPython : None pandas_datareader: None bs4 : None bottleneck : None brotli : None fastparquet : None fsspec : None gcsfs : None matplotlib : 3.6.0 numba : None numexpr : None odfpy : None openpyxl : None pandas_gbq : None pyarrow : None pyreadstat : None pyxlsb : None s3fs : None scipy : None snappy : None sqlalchemy : None tables : None tabulate : None xarray : None xlrd : None xlwt : None zstandard : None tzdata : NoneReplace this line with the output of pd.show_versions() </details>
      author:
         url:https://github.com/bbassett-tibco
         type:Person
         name:bbassett-tibco
      datePublished:2022-10-05T03:27:00.000Z
      interactionStatistic:
         type:InteractionCounter
         interactionType:https://schema.org/CommentAction
         userInteractionCount:5
      url:https://github.com/48951/pandas/issues/48951
      context:https://schema.org
      headline:BUG: 'Series.to_numpy(dtype=, na_value=)' behaves differently with 'pd.NA' and 'np.nan'
      articleBody:### Pandas version checks - [X] I have checked that this issue has not already been reported. - [X] I have confirmed this bug exists on the [latest version](https://pandas.pydata.org/docs/whatsnew/index.html) of pandas. - [ ] I have confirmed this bug exists on the main branch of pandas. ### Reproducible Example ```python import pandas as pd import numpy as np x1 = pd.Series([1, 2, None, 4]) x2 = pd.Series([1, 2, np.nan, 4]) x3 = pd.Series([1, 2, pd.NA, 4]) print(x1.to_numpy('int32', na_value=0)) # [1 2 0 4] print(x2.to_numpy('int32', na_value=0)) # [1 2 0 4] print(x3.to_numpy('int32', na_value=0)) # Traceback (most recent call last): # File "<input>", line 14, in <module> # print(x3.to_numpy('int32', na_value=0)) # File "C:\src\venv\w310\lib\site-packages\pandas\core\base.py", line 535, in to_numpy # result = np.asarray(self._values, dtype=dtype) # TypeError: int() argument must be a string, a bytes-like object or a real number, not 'NAType' print(x3.to_numpy('float64', na_value=0)) # Traceback (most recent call last): # File "<input>", line 22, in <module> # print(x3.to_numpy('float64', na_value=0)) # File "C:\src\venv\w310\lib\site-packages\pandas\core\base.py", line 535, in to_numpy # result = np.asarray(self._values, dtype=dtype) # TypeError: float() argument must be a string or a real number, not 'NAType' ``` ### Issue Description It appears that a Series that has a missing value that was created using either `None` or `np.nan` can be replaced by using `Series.to_numpy(dtype=, na_value=)`, but one created with `pd.NA` fails with a raised exception (both arguments must be specified to trigger the behavior). ### Expected Behavior It is expected that since all three values (`None`, `np.nan`, and `pd.NA`) all represent missing values, that all three should behave the same. For the above reproducible example, the print statements should all report `[1 2 0 4]` (or `[1. 2. 0. 4.]` for the fourth 'float64' case). ### Installed Versions <details> INSTALLED VERSIONS ------------------ commit : 87cfe4e38bafe7300a6003a1d18bd80f3f77c763 python : 3.10.6.final.0 python-bits : 64 OS : Windows OS-release : 10 Version : 10.0.19043 machine : AMD64 processor : Intel64 Family 6 Model 158 Stepping 13, GenuineIntel byteorder : little LC_ALL : None LANG : None LOCALE : English_United States.1252 pandas : 1.5.0 numpy : 1.23.3 pytz : 2022.2.1 dateutil : 2.8.2 setuptools : 65.3.0 pip : 22.2.2 Cython : 0.29.32 pytest : None hypothesis : None sphinx : None blosc : None feather : None xlsxwriter : None lxml.etree : 4.9.1 html5lib : None pymysql : None psycopg2 : None jinja2 : None IPython : None pandas_datareader: None bs4 : None bottleneck : None brotli : None fastparquet : None fsspec : None gcsfs : None matplotlib : 3.6.0 numba : None numexpr : None odfpy : None openpyxl : None pandas_gbq : None pyarrow : None pyreadstat : None pyxlsb : None s3fs : None scipy : None snappy : None sqlalchemy : None tables : None tabulate : None xarray : None xlrd : None xlwt : None zstandard : None tzdata : NoneReplace this line with the output of pd.show_versions() </details>
      author:
         url:https://github.com/bbassett-tibco
         type:Person
         name:bbassett-tibco
      datePublished:2022-10-05T03:27:00.000Z
      interactionStatistic:
         type:InteractionCounter
         interactionType:https://schema.org/CommentAction
         userInteractionCount:5
      url:https://github.com/48951/pandas/issues/48951
Person:
      url:https://github.com/bbassett-tibco
      name:bbassett-tibco
      url:https://github.com/bbassett-tibco
      name:bbassett-tibco
InteractionCounter:
      interactionType:https://schema.org/CommentAction
      userInteractionCount:5
      interactionType:https://schema.org/CommentAction
      userInteractionCount:5

Analytics and Tracking {πŸ“Š}

  • Site Verification - Google

Libraries {πŸ“š}

  • Clipboard.js
  • D3.js
  • Lodash

Emails and Hosting {βœ‰οΈ}

Mail Servers:

  • aspmx.l.google.com
  • alt1.aspmx.l.google.com
  • alt2.aspmx.l.google.com
  • alt3.aspmx.l.google.com
  • alt4.aspmx.l.google.com

Name Servers:

  • dns1.p08.nsone.net
  • dns2.p08.nsone.net
  • dns3.p08.nsone.net
  • dns4.p08.nsone.net
  • ns-1283.awsdns-32.org
  • ns-1707.awsdns-21.co.uk
  • ns-421.awsdns-52.com
  • ns-520.awsdns-01.net
8.47s.