Here's how GITHUB.COM makes money* and how much!

*Please read our disclaimer before using our estimates.
Loading...

GITHUB . COM {}

Detected CMS Systems:

  1. Analyzed Page
  2. Matching Content Categories
  3. CMS
  4. Monthly Traffic Estimate
  5. How Does Github.com Make Money
  6. How Much Does Github.com Make
  7. Wordpress Themes And Plugins
  8. Keywords
  9. Topics
  10. Payment Methods
  11. Questions
  12. Schema
  13. External Links
  14. Analytics And Tracking
  15. Libraries
  16. Hosting Providers

We are analyzing https://github.com/pandas-dev/pandas/issues/48749.

Title:
API/PERF: Don't reorder categoricals when grouping by an unordered categorical and `sort=False` Β· Issue #48749 Β· pandas-dev/pandas
Description:
xref: dask/dask#9486 (comment) TLDR: When calling df.groupby(key=categocial<order=False>, sort=True, observed=False) the resulting CategoricalIndex will have it's values and categories un...
Website Age:
17 years and 8 months (reg. 2007-10-09).

Matching Content Categories {πŸ“š}

  • Technology & Computing
  • Education
  • Social Networks

Content Management System {πŸ“}

What CMS is github.com built with?


Github.com employs WORDPRESS.

Traffic Estimate {πŸ“ˆ}

What is the average monthly size of github.com audience?

πŸš€πŸŒ  Tremendous Traffic: 10M - 20M visitors per month


Based on our best estimate, this website will receive around 10,000,019 visitors per month in the current month.
However, some sources were not loaded, we suggest to reload the page to get complete results.

check SE Ranking
check Ahrefs
check Similarweb
check Ubersuggest
check Semrush

How Does Github.com Make Money? {πŸ’Έ}


Subscription Packages {πŸ’³}

We've located a dedicated page on github.com that might include details about subscription plans or recurring payments. We identified it based on the word pricing in one of its internal links. Below, you'll find additional estimates for its monthly recurring revenues.

How Much Does Github.com Make? {πŸ’°}


Subscription Packages {πŸ’³}

Prices on github.com are in US Dollars ($). They range from $4.00/month to $21.00/month.
We estimate that the site has approximately 4,989,889 paying customers.
The estimated monthly recurring revenue (MRR) is $20,957,532.
The estimated annual recurring revenues (ARR) are $251,490,385.

Wordpress Themes and Plugins {🎨}

What WordPress theme does this site use?

It is strange but we were not able to detect any theme on the page.

What WordPress plugins does this website use?

It is strange but we were not able to detect any plugins on the page.

Keywords {πŸ”}

categories, categorical, groupby, sortfalse, order, mroeschke, rhshadrach, performance, result, grouping, issue, values, commented, member, codes, sign, code, reorder, type, mentioned, projects, unordered, daskdask, comment, categoricalindex, orderedfalse, groups, cat, data, reordering, libs, labels, returned, navigation, open, pandas, pull, requests, actions, security, apiperf, dont, categoricals, sorttrue, resulting, dfgroupbycol, observedfalsefirstindex, dtypecategory, namerange, sorted,

Topics {βœ’οΈ}

pandas/pandas/core/groupby/categorical personal information api/perf rhshadrach edits member respect sort=true/false nice performance benefit recode categorical codes type projects assess issue discussion requires discussion extra time cost _libs groupby code groupby result disagrees comment metadata assignees rhshadrach mentioned categorical codes [2 unordered categorical called labels projects milestone perf difference groupby code data core team grouping labels sort=true sort=false pandas ] = categorical categorical observed=false ordered=false extra work info clarification behavior needed sorting imposes ~2x slower ~10x slower perf slap grouper incorrect results desired output milestone relationships categories unordered integer categories string categories codes[cat encountered order reorder categoricals dtype='category' take_codes = np github

Payment Methods {πŸ“Š}

  • Braintree

Questions {❓}

  • Already have an account?
  • Do we have an idea what kind of extra time cost the sorting imposes for something sensible, like 10 000 rows and a 100 categories?

Schema {πŸ—ΊοΈ}

DiscussionForumPosting:
      context:https://schema.org
      headline:API/PERF: Don't reorder categoricals when grouping by an unordered categorical and `sort=False`
      articleBody:xref: https://github.com/dask/dask/pull/9486#issue-1372066649 TLDR: When calling `df.groupby(key=categocial<order=False>, sort=True, observed=False)` the resulting `CategoricalIndex` will have it's values _and categories_ unordered. ``` In [1]: df = DataFrame( ...: [ ...: ["(7.5, 10]", 10, 10], ...: ["(7.5, 10]", 8, 20], ...: ["(2.5, 5]", 5, 30], ...: ["(5, 7.5]", 6, 40], ...: ["(2.5, 5]", 4, 50], ...: ["(0, 2.5]", 1, 60], ...: ["(5, 7.5]", 7, 70], ...: ], ...: columns=["range", "foo", "bar"], ...: ) In [2]: col = "range" In [3]: df["range"] = Categorical(df["range"], ordered=False) In [4]: df.groupby(col, sort=True, observed=False).first().index Out[4]: CategoricalIndex(['(0, 2.5]', '(2.5, 5]', '(5, 7.5]', '(7.5, 10]'], categories=['(0, 2.5]', '(2.5, 5]', '(5, 7.5]', '(7.5, 10]'], ordered=False, dtype='category', name='range') In [5]: df.groupby(col, sort=False, observed=False).first().index Out[5]: CategoricalIndex(['(7.5, 10]', '(2.5, 5]', '(5, 7.5]', '(0, 2.5]'], categories=['(7.5, 10]', '(2.5, 5]', '(5, 7.5]', '(0, 2.5]'], ordered=False, dtype='category', name='range') ``` It's reasonable that the values are not sorted, but a lot of extra work can be spent un-ordering the _categories_ in: https://github.com/pandas-dev/pandas/blob/44a4f1619ff5031e59a970a61fac94c3745e4433/pandas/core/groupby/categorical.py#L77-L92 May have been an outcome of fixing https://github.com/pandas-dev/pandas/issues/8868, but if grouping and `sort=False` the values can be achieved without reordering the categories, there would probably be a nice performance benefit.
      author:
         url:https://github.com/mroeschke
         type:Person
         name:mroeschke
      datePublished:2022-09-23T20:45:55.000Z
      interactionStatistic:
         type:InteractionCounter
         interactionType:https://schema.org/CommentAction
         userInteractionCount:9
      url:https://github.com/48749/pandas/issues/48749
      context:https://schema.org
      headline:API/PERF: Don't reorder categoricals when grouping by an unordered categorical and `sort=False`
      articleBody:xref: https://github.com/dask/dask/pull/9486#issue-1372066649 TLDR: When calling `df.groupby(key=categocial<order=False>, sort=True, observed=False)` the resulting `CategoricalIndex` will have it's values _and categories_ unordered. ``` In [1]: df = DataFrame( ...: [ ...: ["(7.5, 10]", 10, 10], ...: ["(7.5, 10]", 8, 20], ...: ["(2.5, 5]", 5, 30], ...: ["(5, 7.5]", 6, 40], ...: ["(2.5, 5]", 4, 50], ...: ["(0, 2.5]", 1, 60], ...: ["(5, 7.5]", 7, 70], ...: ], ...: columns=["range", "foo", "bar"], ...: ) In [2]: col = "range" In [3]: df["range"] = Categorical(df["range"], ordered=False) In [4]: df.groupby(col, sort=True, observed=False).first().index Out[4]: CategoricalIndex(['(0, 2.5]', '(2.5, 5]', '(5, 7.5]', '(7.5, 10]'], categories=['(0, 2.5]', '(2.5, 5]', '(5, 7.5]', '(7.5, 10]'], ordered=False, dtype='category', name='range') In [5]: df.groupby(col, sort=False, observed=False).first().index Out[5]: CategoricalIndex(['(7.5, 10]', '(2.5, 5]', '(5, 7.5]', '(0, 2.5]'], categories=['(7.5, 10]', '(2.5, 5]', '(5, 7.5]', '(0, 2.5]'], ordered=False, dtype='category', name='range') ``` It's reasonable that the values are not sorted, but a lot of extra work can be spent un-ordering the _categories_ in: https://github.com/pandas-dev/pandas/blob/44a4f1619ff5031e59a970a61fac94c3745e4433/pandas/core/groupby/categorical.py#L77-L92 May have been an outcome of fixing https://github.com/pandas-dev/pandas/issues/8868, but if grouping and `sort=False` the values can be achieved without reordering the categories, there would probably be a nice performance benefit.
      author:
         url:https://github.com/mroeschke
         type:Person
         name:mroeschke
      datePublished:2022-09-23T20:45:55.000Z
      interactionStatistic:
         type:InteractionCounter
         interactionType:https://schema.org/CommentAction
         userInteractionCount:9
      url:https://github.com/48749/pandas/issues/48749
Person:
      url:https://github.com/mroeschke
      name:mroeschke
      url:https://github.com/mroeschke
      name:mroeschke
InteractionCounter:
      interactionType:https://schema.org/CommentAction
      userInteractionCount:9
      interactionType:https://schema.org/CommentAction
      userInteractionCount:9

Analytics and Tracking {πŸ“Š}

  • Site Verification - Google

Libraries {πŸ“š}

  • Clipboard.js
  • D3.js
  • Lodash

Emails and Hosting {βœ‰οΈ}

Mail Servers:

  • aspmx.l.google.com
  • alt1.aspmx.l.google.com
  • alt2.aspmx.l.google.com
  • alt3.aspmx.l.google.com
  • alt4.aspmx.l.google.com

Name Servers:

  • dns1.p08.nsone.net
  • dns2.p08.nsone.net
  • dns3.p08.nsone.net
  • dns4.p08.nsone.net
  • ns-1283.awsdns-32.org
  • ns-1707.awsdns-21.co.uk
  • ns-421.awsdns-52.com
  • ns-520.awsdns-01.net
8.9s.