Here's how GITHUB.COM makes money* and how much!

*Please read our disclaimer before using our estimates.
Loading...

GITHUB . COM {}

Detected CMS Systems:

  1. Analyzed Page
  2. Matching Content Categories
  3. CMS
  4. Monthly Traffic Estimate
  5. How Does Github.com Make Money
  6. How Much Does Github.com Make
  7. Wordpress Themes And Plugins
  8. Keywords
  9. Topics
  10. Payment Methods
  11. Questions
  12. Schema
  13. External Links
  14. Analytics And Tracking
  15. Libraries
  16. Hosting Providers

We are analyzing https://github.com/pandas-dev/pandas/issues/45245.

Title:
API: Consistency between DataFrame, MultiIndex.to_frame and reset_index Β· Issue #45245 Β· pandas-dev/pandas
Description:
DataFrame, MultiIndex.to_frame, Series.reset_index and DataFrame.reset_index all create DataFrames. In most cases they are the same. But in the following cases they behave differently: bool values: DataFrame: bool to_frame: object reset_...
Website Age:
17 years and 8 months (reg. 2007-10-09).

Matching Content Categories {πŸ“š}

  • Family & Parenting
  • Mobile Technology & AI
  • Dating & Relationships

Content Management System {πŸ“}

What CMS is github.com built with?


Github.com is based on WORDPRESS.

Traffic Estimate {πŸ“ˆ}

What is the average monthly size of github.com audience?

πŸš€πŸŒ  Tremendous Traffic: 10M - 20M visitors per month


Based on our best estimate, this website will receive around 10,000,019 visitors per month in the current month.
However, some sources were not loaded, we suggest to reload the page to get complete results.

check SE Ranking
check Ahrefs
check Similarweb
check Ubersuggest
check Semrush

How Does Github.com Make Money? {πŸ’Έ}


Subscription Packages {πŸ’³}

We've located a dedicated page on github.com that might include details about subscription plans or recurring payments. We identified it based on the word pricing in one of its internal links. Below, you'll find additional estimates for its monthly recurring revenues.

How Much Does Github.com Make? {πŸ’°}


Subscription Packages {πŸ’³}

Prices on github.com are in US Dollars ($). They range from $4.00/month to $21.00/month.
We estimate that the site has approximately 4,989,889 paying customers.
The estimated monthly recurring revenue (MRR) is $20,957,532.
The estimated annual recurring revenues (ARR) are $251,490,385.

Wordpress Themes and Plugins {🎨}

What WordPress theme does this site use?

It is strange but we were not able to detect any theme on the page.

What WordPress plugins does this website use?

It is strange but we were not able to detect any plugins on the page.

Keywords {πŸ”}

int, dtype, dataframe, object, toframe, dtypes, resetindex, values, column, names, bool, consistency, level, false, true, printfdfndtypesndfdtypes, sign, api, multiindextoframe, allowduplicates, conversions, pandas, projects, issue, johnzangwill, nan, raise, navigation, open, pull, requests, actions, security, cases, missing, number, leveln, duplicated, suggest, printnresetindex, pddataframeindexindexresetindex, valueerror, kwargs, return, cusersjohnonedrivedocumentsgithubpandasjohnzangwillpandascoreframepy, insert, exists, mentioned, labels, added,

Topics {βœ’οΈ}

users\john\onedrive\documents\github\pandas_johnzangwill\pandas\util\_decorators users\john\onedrive\documents\github\pandas_johnzangwill\pandas\core\frame ~\appdata\local\temp/ipykernel_21224/810260565 personal information api bool missing column comment metadata assignees import pandas silently skips reset_index duplicated column names additional parameter allow_duplicates type projects github bool dtype projects milestone int64 dtype object dtype 'b'] dataframe consistency column number nan to_frame 'a'] dataframe bool to_frame default false index=false insert {column} as_index=false object to_frame bool values object reset_index object reset_index create dataframes behave differently current situation index=index recent call index = new_index milestone relationships index = pd add allow_duplicates object values {df}\ndtypes df = index df = pd dataframe ] dataframe level columns=names names=names column exists

Payment Methods {πŸ“Š}

  • Braintree

Questions {❓}

  • 4434 # Should this be a different kind of error?
  • Already have an account?

Schema {πŸ—ΊοΈ}

DiscussionForumPosting:
      context:https://schema.org
      headline:API: Consistency between DataFrame, MultiIndex.to_frame and reset_index
      articleBody:DataFrame, MultiIndex.to_frame, Series.reset_index and DataFrame.reset_index all create DataFrames. In most cases they are the same. But in the following cases they behave differently: - bool values: - DataFrame: bool - to_frame: object - reset_index: bool - Missing column name: - DataFrame: NaN - to_frame: n (where n is the column number) - reset_index: level_n (where n is the column number) - Duplicated column names: - DataFrame: creates them - to_frame: silently skips - reset_index: raises I suggest the following changes: - bool values: to_frame should restore bool dtype - Missing level name: to_frame should use level_n, as do many other Pandas methods - Duplicated level name: to_frame should raise I would also suggest that both to_frame and reset_index have an additional parameter `allow_duplicates`, default False, but this seems controversial (#44755)... This illustrates the current situation: ``` import pandas as pd for (values, names) in [ ([(1, 2),(3, 4)],["a", "b"]), ([(1, True),(3, False)],["a", "b"]), ([(1, 2),(3, 4)],["a", None]), ([(1, 2),(3, 4)],["a", "a"]), ]: print(f"\nvalues: {values}, names: {names}") print("\nDataFrame") df = pd.DataFrame(values, columns=names) print(f"{df}\nDtypes:\n{df.dtypes}") print("\nto_frame") index = pd.MultiIndex.from_tuples(values, names=names) df = index.to_frame(index=False) print(f"{df}\nDtypes:\n{df.dtypes}") print("\nreset_index") df = pd.DataFrame(index=index).reset_index() print(f"{df}\nDtypes:\n{df.dtypes}") values: [(1, 2), (3, 4)], names: ['a', 'b'] DataFrame a b 0 1 2 1 3 4 Dtypes: a int64 b int64 dtype: object to_frame a b 0 1 2 1 3 4 Dtypes: a int64 b int64 dtype: object reset_index a b 0 1 2 1 3 4 Dtypes: a int64 b int64 dtype: object values: [(1, True), (3, False)], names: ['a', 'b'] DataFrame a b 0 1 True 1 3 False Dtypes: a int64 b bool dtype: object to_frame a b 0 1 True 1 3 False Dtypes: a int64 b object dtype: object reset_index a b 0 1 True 1 3 False Dtypes: a int64 b bool dtype: object values: [(1, 2), (3, 4)], names: ['a', None] DataFrame a NaN 0 1 2 1 3 4 Dtypes: a int64 NaN int64 dtype: object to_frame a 1 0 1 2 1 3 4 Dtypes: a int64 1 int64 dtype: object reset_index a level_1 0 1 2 1 3 4 Dtypes: a int64 level_1 int64 dtype: object values: [(1, 2), (3, 4)], names: ['a', 'a'] DataFrame a a 0 1 2 1 3 4 Dtypes: a int64 a int64 dtype: object to_frame a 0 2 1 4 Dtypes: a int64 dtype: object reset_index --------------------------------------------------------------------------- ValueError Traceback (most recent call last) ~\AppData\Local\Temp/ipykernel_21224/810260565.py in <module> 14 print(f"{df}\nDtypes:\n{df.dtypes}") 15 print("\nreset_index") ---> 16 df = pd.DataFrame(index=index).reset_index() 17 print(f"{df}\nDtypes:\n{df.dtypes}") c:\users\john\onedrive\documents\github\pandas_johnzangwill\pandas\util\_decorators.py in wrapper(*args, **kwargs) 309 stacklevel=stacklevel, 310 ) --> 311 return func(*args, **kwargs) 312 313 return wrapper c:\users\john\onedrive\documents\github\pandas_johnzangwill\pandas\core\frame.py in reset_index(self, level, drop, inplace, col_level, col_fill) 5832 ) 5833 -> 5834 new_obj.insert(0, name, level_values) 5835 5836 new_obj.index = new_index c:\users\john\onedrive\documents\github\pandas_johnzangwill\pandas\core\frame.py in insert(self, loc, column, value, allow_duplicates) 4433 if not allow_duplicates and column in self.columns: 4434 # Should this be a different kind of error?? -> 4435 raise ValueError(f"cannot insert {column}, already exists") 4436 if not isinstance(loc, int): 4437 raise TypeError("loc must be int") ValueError: cannot insert a, already exists ```
      author:
         url:https://github.com/johnzangwill
         type:Person
         name:johnzangwill
      datePublished:2022-01-07T12:23:23.000Z
      interactionStatistic:
         type:InteractionCounter
         interactionType:https://schema.org/CommentAction
         userInteractionCount:0
      url:https://github.com/45245/pandas/issues/45245
      context:https://schema.org
      headline:API: Consistency between DataFrame, MultiIndex.to_frame and reset_index
      articleBody:DataFrame, MultiIndex.to_frame, Series.reset_index and DataFrame.reset_index all create DataFrames. In most cases they are the same. But in the following cases they behave differently: - bool values: - DataFrame: bool - to_frame: object - reset_index: bool - Missing column name: - DataFrame: NaN - to_frame: n (where n is the column number) - reset_index: level_n (where n is the column number) - Duplicated column names: - DataFrame: creates them - to_frame: silently skips - reset_index: raises I suggest the following changes: - bool values: to_frame should restore bool dtype - Missing level name: to_frame should use level_n, as do many other Pandas methods - Duplicated level name: to_frame should raise I would also suggest that both to_frame and reset_index have an additional parameter `allow_duplicates`, default False, but this seems controversial (#44755)... This illustrates the current situation: ``` import pandas as pd for (values, names) in [ ([(1, 2),(3, 4)],["a", "b"]), ([(1, True),(3, False)],["a", "b"]), ([(1, 2),(3, 4)],["a", None]), ([(1, 2),(3, 4)],["a", "a"]), ]: print(f"\nvalues: {values}, names: {names}") print("\nDataFrame") df = pd.DataFrame(values, columns=names) print(f"{df}\nDtypes:\n{df.dtypes}") print("\nto_frame") index = pd.MultiIndex.from_tuples(values, names=names) df = index.to_frame(index=False) print(f"{df}\nDtypes:\n{df.dtypes}") print("\nreset_index") df = pd.DataFrame(index=index).reset_index() print(f"{df}\nDtypes:\n{df.dtypes}") values: [(1, 2), (3, 4)], names: ['a', 'b'] DataFrame a b 0 1 2 1 3 4 Dtypes: a int64 b int64 dtype: object to_frame a b 0 1 2 1 3 4 Dtypes: a int64 b int64 dtype: object reset_index a b 0 1 2 1 3 4 Dtypes: a int64 b int64 dtype: object values: [(1, True), (3, False)], names: ['a', 'b'] DataFrame a b 0 1 True 1 3 False Dtypes: a int64 b bool dtype: object to_frame a b 0 1 True 1 3 False Dtypes: a int64 b object dtype: object reset_index a b 0 1 True 1 3 False Dtypes: a int64 b bool dtype: object values: [(1, 2), (3, 4)], names: ['a', None] DataFrame a NaN 0 1 2 1 3 4 Dtypes: a int64 NaN int64 dtype: object to_frame a 1 0 1 2 1 3 4 Dtypes: a int64 1 int64 dtype: object reset_index a level_1 0 1 2 1 3 4 Dtypes: a int64 level_1 int64 dtype: object values: [(1, 2), (3, 4)], names: ['a', 'a'] DataFrame a a 0 1 2 1 3 4 Dtypes: a int64 a int64 dtype: object to_frame a 0 2 1 4 Dtypes: a int64 dtype: object reset_index --------------------------------------------------------------------------- ValueError Traceback (most recent call last) ~\AppData\Local\Temp/ipykernel_21224/810260565.py in <module> 14 print(f"{df}\nDtypes:\n{df.dtypes}") 15 print("\nreset_index") ---> 16 df = pd.DataFrame(index=index).reset_index() 17 print(f"{df}\nDtypes:\n{df.dtypes}") c:\users\john\onedrive\documents\github\pandas_johnzangwill\pandas\util\_decorators.py in wrapper(*args, **kwargs) 309 stacklevel=stacklevel, 310 ) --> 311 return func(*args, **kwargs) 312 313 return wrapper c:\users\john\onedrive\documents\github\pandas_johnzangwill\pandas\core\frame.py in reset_index(self, level, drop, inplace, col_level, col_fill) 5832 ) 5833 -> 5834 new_obj.insert(0, name, level_values) 5835 5836 new_obj.index = new_index c:\users\john\onedrive\documents\github\pandas_johnzangwill\pandas\core\frame.py in insert(self, loc, column, value, allow_duplicates) 4433 if not allow_duplicates and column in self.columns: 4434 # Should this be a different kind of error?? -> 4435 raise ValueError(f"cannot insert {column}, already exists") 4436 if not isinstance(loc, int): 4437 raise TypeError("loc must be int") ValueError: cannot insert a, already exists ```
      author:
         url:https://github.com/johnzangwill
         type:Person
         name:johnzangwill
      datePublished:2022-01-07T12:23:23.000Z
      interactionStatistic:
         type:InteractionCounter
         interactionType:https://schema.org/CommentAction
         userInteractionCount:0
      url:https://github.com/45245/pandas/issues/45245
Person:
      url:https://github.com/johnzangwill
      name:johnzangwill
      url:https://github.com/johnzangwill
      name:johnzangwill
InteractionCounter:
      interactionType:https://schema.org/CommentAction
      userInteractionCount:0
      interactionType:https://schema.org/CommentAction
      userInteractionCount:0

Analytics and Tracking {πŸ“Š}

  • Site Verification - Google

Libraries {πŸ“š}

  • Clipboard.js
  • D3.js
  • Lodash

Emails and Hosting {βœ‰οΈ}

Mail Servers:

  • aspmx.l.google.com
  • alt1.aspmx.l.google.com
  • alt2.aspmx.l.google.com
  • alt3.aspmx.l.google.com
  • alt4.aspmx.l.google.com

Name Servers:

  • dns1.p08.nsone.net
  • dns2.p08.nsone.net
  • dns3.p08.nsone.net
  • dns4.p08.nsone.net
  • ns-1283.awsdns-32.org
  • ns-1707.awsdns-21.co.uk
  • ns-421.awsdns-52.com
  • ns-520.awsdns-01.net
9.43s.