Here's how GITHUB.COM makes money* and how much!

*Please read our disclaimer before using our estimates.
Loading...

GITHUB . COM {}

Detected CMS Systems:

  1. Analyzed Page
  2. Matching Content Categories
  3. CMS
  4. Monthly Traffic Estimate
  5. How Does Github.com Make Money
  6. How Much Does Github.com Make
  7. Wordpress Themes And Plugins
  8. Keywords
  9. Topics
  10. Payment Methods
  11. Questions
  12. Schema
  13. External Links
  14. Analytics And Tracking
  15. Libraries
  16. Hosting Providers

We are analyzing https://github.com/pandas-dev/pandas/issues/39911.

Title:
BUG: DataFrame does not display as LaTeX in Jupyter when it should Β· Issue #39911 Β· pandas-dev/pandas
Description:
[ X] I have checked that this issue has not already been reported. [ X] I have confirmed this bug exists on the latest version of pandas. (optional) I have confirmed this bug exists on the master branch of pandas. If you run the followin...
Website Age:
17 years and 8 months (reg. 2007-10-09).

Matching Content Categories {πŸ“š}

  • Technology & Computing
  • Telecommunications
  • Mobile Technology & AI

Content Management System {πŸ“}

What CMS is github.com built with?


Github.com is built with WORDPRESS.

Traffic Estimate {πŸ“ˆ}

What is the average monthly size of github.com audience?

πŸš€πŸŒ  Tremendous Traffic: 10M - 20M visitors per month


Based on our best estimate, this website will receive around 10,000,019 visitors per month in the current month.
However, some sources were not loaded, we suggest to reload the page to get complete results.

check SE Ranking
check Ahrefs
check Similarweb
check Ubersuggest
check Semrush

How Does Github.com Make Money? {πŸ’Έ}


Subscription Packages {πŸ’³}

We've located a dedicated page on github.com that might include details about subscription plans or recurring payments. We identified it based on the word pricing in one of its internal links. Below, you'll find additional estimates for its monthly recurring revenues.

How Much Does Github.com Make? {πŸ’°}


Subscription Packages {πŸ’³}

Prices on github.com are in US Dollars ($). They range from $4.00/month to $21.00/month.
We estimate that the site has approximately 4,989,889 paying customers.
The estimated monthly recurring revenue (MRR) is $20,957,532.
The estimated annual recurring revenues (ARR) are $251,490,385.

Wordpress Themes and Plugins {🎨}

What WordPress theme does this site use?

It is strange but we were not able to detect any theme on the page.

What WordPress plugins does this website use?

It is strange but we were not able to detect any plugins on the page.

Keywords {πŸ”}

pandas, attack, latex, mime, bug, dataframe, jupyter, issue, commented, contributor, styler, westurner, sign, allendowney, added, bundles, projects, html, reprlatex, option, problem, tolatex, textplain, texthtml, textlatex, data, types, navigation, pull, requests, actions, security, display, closed, description, confirmed, exists, version, true, repr, series, works, displaylatexrepr, output, triage, reviewed, team, member, working, removed,

Topics {βœ’οΈ}

/jupyter-xeus/xeus-cling/blob/00b1fa69d17b390b7d3b470a9859281350863d30/src/xmime_internal /ipython/ipython/blob/master/ipython/lib/display io/en/stable/api/generated/ipython /ipython/ipython/blob/master/ipython/core/display /ipython/ipython/blob/master/ipython/display expected output '\\begin{tabular}{lrr} text/plain -- __str__ text/plain io/en/latest/messaging end{tabular}\n' output text/latex index text/html -- _repr_html_ westurner edits contributor text/html completed attack68 mentioned personal information bug comment metadata assignees py ipython mime bundles recently master branch pandas option return mime bundles html repr latex repr bug exists type projects projects milestone repr option import pandas pandas produce styler version triage issue //ipython latest version series shows styler implementation problem description mime bundles jupyter cell //jupyter-client style type mime bundle html raw data _repr_html_ = pd repr = true configurable list lib repr_latex depending eyeballs

Payment Methods {πŸ“Š}

  • Braintree

Questions {❓}

  • Already have an account?
  • Index?
  • Should Pandas instead return a mime bundle with one or more representations of the table?
  • Which of these formats does pandas produce now?
  • Com/item?

Schema {πŸ—ΊοΈ}

DiscussionForumPosting:
      context:https://schema.org
      headline:BUG: DataFrame does not display as LaTeX in Jupyter when it should
      articleBody:- [ X] I have checked that this issue has not already been reported. - [ X] I have confirmed this bug exists on the latest version of pandas. - [ ] (optional) I have confirmed this bug exists on the master branch of pandas. --- If you run the following in a Jupyter cell: ```python import pandas as pd pd.options.display.latex.repr = True d = {'one' : [1., 2., 3., 4.], 'two' : [4., 3., 2., 1.]} df = pd.DataFrame(d) df ``` The result is the HTML repr, as usual. But if you select a column, the Series shows the LaTeX repr, as it should. ``` df['one'] ``` But `DataFrame` has `_repr_latex_`, because this works: ``` df._repr_latex_() ``` So it seems like DataFrame is ignoring the `display.latex.repr` option. #### Problem description When `display.latex.repr` is True, DataFrames should get represented in LaTeX, not HTML. #### Expected Output ``` '\\begin{tabular}{lrr}\n\\toprule\n{} & one & two \\\\\n\\midrule\n0 & 1.0 & 4.0 \\\\\n1 & 2.0 & 3.0 \\\\\n2 & 3.0 & 2.0 \\\\\n3 & 4.0 & 1.0 \\\\\n\\bottomrule\n\\end{tabular}\n' ``` #### Output of ``pd.show_versions()`` <details> INSTALLED VERSIONS ------------------ commit : 7d32926db8f7541c356066dcadabf854487738de python : 3.7.9.final.0 python-bits : 64 OS : Linux OS-release : 4.15.0-72-generic Version : #81~16.04.1-Ubuntu SMP Tue Nov 26 16:34:21 UTC 2019 machine : x86_64 processor : x86_64 byteorder : little LC_ALL : None LANG : en_US.UTF-8 LOCALE : en_US.UTF-8 pandas : 1.2.2 numpy : 1.19.2 pytz : 2021.1 dateutil : 2.8.1 pip : 21.0.1 setuptools : 52.0.0.post20210125 Cython : None pytest : 6.2.2 hypothesis : None sphinx : 3.4.3 blosc : None feather : None xlsxwriter : None lxml.etree : 4.6.2 html5lib : 1.1 pymysql : None psycopg2 : None jinja2 : 2.11.3 IPython : 7.20.0 pandas_datareader: None bs4 : 4.9.3 bottleneck : None fsspec : None fastparquet : None gcsfs : None matplotlib : 3.3.4 numexpr : 2.7.2 odfpy : None openpyxl : None pandas_gbq : None pyarrow : None pyxlsb : None s3fs : None scipy : 1.6.0 sqlalchemy : 1.3.23 tables : 3.6.1 tabulate : None xarray : None xlrd : None xlwt : None numba : None </details>
      author:
         url:https://github.com/AllenDowney
         type:Person
         name:AllenDowney
      datePublished:2021-02-19T14:49:11.000Z
      interactionStatistic:
         type:InteractionCounter
         interactionType:https://schema.org/CommentAction
         userInteractionCount:5
      url:https://github.com/39911/pandas/issues/39911
      context:https://schema.org
      headline:BUG: DataFrame does not display as LaTeX in Jupyter when it should
      articleBody:- [ X] I have checked that this issue has not already been reported. - [ X] I have confirmed this bug exists on the latest version of pandas. - [ ] (optional) I have confirmed this bug exists on the master branch of pandas. --- If you run the following in a Jupyter cell: ```python import pandas as pd pd.options.display.latex.repr = True d = {'one' : [1., 2., 3., 4.], 'two' : [4., 3., 2., 1.]} df = pd.DataFrame(d) df ``` The result is the HTML repr, as usual. But if you select a column, the Series shows the LaTeX repr, as it should. ``` df['one'] ``` But `DataFrame` has `_repr_latex_`, because this works: ``` df._repr_latex_() ``` So it seems like DataFrame is ignoring the `display.latex.repr` option. #### Problem description When `display.latex.repr` is True, DataFrames should get represented in LaTeX, not HTML. #### Expected Output ``` '\\begin{tabular}{lrr}\n\\toprule\n{} & one & two \\\\\n\\midrule\n0 & 1.0 & 4.0 \\\\\n1 & 2.0 & 3.0 \\\\\n2 & 3.0 & 2.0 \\\\\n3 & 4.0 & 1.0 \\\\\n\\bottomrule\n\\end{tabular}\n' ``` #### Output of ``pd.show_versions()`` <details> INSTALLED VERSIONS ------------------ commit : 7d32926db8f7541c356066dcadabf854487738de python : 3.7.9.final.0 python-bits : 64 OS : Linux OS-release : 4.15.0-72-generic Version : #81~16.04.1-Ubuntu SMP Tue Nov 26 16:34:21 UTC 2019 machine : x86_64 processor : x86_64 byteorder : little LC_ALL : None LANG : en_US.UTF-8 LOCALE : en_US.UTF-8 pandas : 1.2.2 numpy : 1.19.2 pytz : 2021.1 dateutil : 2.8.1 pip : 21.0.1 setuptools : 52.0.0.post20210125 Cython : None pytest : 6.2.2 hypothesis : None sphinx : 3.4.3 blosc : None feather : None xlsxwriter : None lxml.etree : 4.6.2 html5lib : 1.1 pymysql : None psycopg2 : None jinja2 : 2.11.3 IPython : 7.20.0 pandas_datareader: None bs4 : 4.9.3 bottleneck : None fsspec : None fastparquet : None gcsfs : None matplotlib : 3.3.4 numexpr : 2.7.2 odfpy : None openpyxl : None pandas_gbq : None pyarrow : None pyxlsb : None s3fs : None scipy : 1.6.0 sqlalchemy : 1.3.23 tables : 3.6.1 tabulate : None xarray : None xlrd : None xlwt : None numba : None </details>
      author:
         url:https://github.com/AllenDowney
         type:Person
         name:AllenDowney
      datePublished:2021-02-19T14:49:11.000Z
      interactionStatistic:
         type:InteractionCounter
         interactionType:https://schema.org/CommentAction
         userInteractionCount:5
      url:https://github.com/39911/pandas/issues/39911
Person:
      url:https://github.com/AllenDowney
      name:AllenDowney
      url:https://github.com/AllenDowney
      name:AllenDowney
InteractionCounter:
      interactionType:https://schema.org/CommentAction
      userInteractionCount:5
      interactionType:https://schema.org/CommentAction
      userInteractionCount:5

Analytics and Tracking {πŸ“Š}

  • Site Verification - Google

Libraries {πŸ“š}

  • Clipboard.js
  • D3.js
  • Lodash

Emails and Hosting {βœ‰οΈ}

Mail Servers:

  • aspmx.l.google.com
  • alt1.aspmx.l.google.com
  • alt2.aspmx.l.google.com
  • alt3.aspmx.l.google.com
  • alt4.aspmx.l.google.com

Name Servers:

  • dns1.p08.nsone.net
  • dns2.p08.nsone.net
  • dns3.p08.nsone.net
  • dns4.p08.nsone.net
  • ns-1283.awsdns-32.org
  • ns-1707.awsdns-21.co.uk
  • ns-421.awsdns-52.com
  • ns-520.awsdns-01.net
9.15s.