
GITHUB . COM {
}
Detected CMS Systems:
- Wordpress (2 occurrences)
Title:
BUG: Get wrong result when groupby category column with dropna=False Β· Issue #36327 Β· pandas-dev/pandas
Description:
I have confirmed this bug exists on the master branch of pandas. # Your code here ser = pd.Series([1., 1., 1., 1.]) cat = pd.Categorical(['a', 'b', 'c', np.nan]) print(ser.g...
Website Age:
17 years and 8 months (reg. 2007-10-09).
Matching Content Categories {π}
- Technology & Computing
- Education
- Mobile Technology & AI
Content Management System {π}
What CMS is github.com built with?
Github.com uses WORDPRESS.
Traffic Estimate {π}
What is the average monthly size of github.com audience?
ππ Tremendous Traffic: 10M - 20M visitors per month
Based on our best estimate, this website will receive around 10,000,019 visitors per month in the current month.
However, some sources were not loaded, we suggest to reload the page to get complete results.
check SE Ranking
check Ahrefs
check Similarweb
check Ubersuggest
check Semrush
How Does Github.com Make Money? {πΈ}
Subscription Packages {π³}
We've located a dedicated page on github.com that might include details about subscription plans or recurring payments. We identified it based on the word pricing in one of its internal links. Below, you'll find additional estimates for its monthly recurring revenues.How Much Does Github.com Make? {π°}
Subscription Packages {π³}
Prices on github.com are in US Dollars ($).
They range from $4.00/month to $21.00/month.
We estimate that the site has approximately 4,989,889 paying customers.
The estimated monthly recurring revenue (MRR) is $20,957,532.
The estimated annual recurring revenues (ARR) are $251,490,385.
Wordpress Themes and Plugins {π¨}
What WordPress theme does this site use?
It is strange but we were not able to detect any theme on the page.
What WordPress plugins does this website use?
It is strange but we were not able to detect any plugins on the page.
Keywords {π}
var, groupby, nan, bug, issue, categorical, pandas, ser, npnan, output, rhshadrach, sign, cat, member, commented, type, code, projects, result, dropnafalse, dropnafalsesum, added, fenderjazz, columns, noncat, mentioned, nas, timstaley, dropna, milestone, navigation, issues, pull, requests, actions, security, wrong, category, column, zxymath, pdcategoricala, dtype, float, expected, triage, reviewed, team, phofl, edited, edits,
Topics {βοΈ}
dask groupby type projects personal information bug groupby category column comment metadata assignees interpolate type rhshadrach mentioned dask timstaley edits categorical projects milestone output var1 var2 bug exists dropna=false fenderjazz edits np triage issue pandas float64 output milestone relationships bug groupby wrong result master branch observed=true distinct result na group test nas grouping columns handle nas issue dropna github ser = pd df = pd cat = pd 'var1' 'var2' ['var1' 'var2'] na code noncat noncat} nas columns pd ser {'ser' nan]
Payment Methods {π}
- Braintree
Questions {β}
- Already have an account?
- It looks different from #35646 to me -- is specifically about categoricals, and happens with >1 groupby columns?
- Have you checked #35646?
Schema {πΊοΈ}
DiscussionForumPosting:
context:https://schema.org
headline:BUG: Get wrong result when groupby category column with dropna=False
articleBody:I have confirmed this bug exists on the master branch of pandas.
```python
# Your code here
ser = pd.Series([1., 1., 1., 1.])
cat = pd.Categorical(['a', 'b', 'c', np.nan])
print(ser.groupby(cat, dropna=False).sum())
```
```
# output:
a 1.0
b 1.0
c 1.0
dtype: float64
```
#### Expected Output
```
a 1.0
b 1.0
c 1.0
NaN 1.0
dtype: float64
```
#### Output of ``pd.show_versions()``
<details>
INSTALLED VERSIONS
------------------
commit : 2a7d3326dee660824a8433ffd01065f8ac37f7d6
python : 3.7.6.final.0
python-bits : 64
OS : Windows
OS-release : 10
Version : 10.0.18362
machine : AMD64
processor : Intel64 Family 6 Model 158 Stepping 13, GenuineIntel
byteorder : little
LC_ALL : None
LANG : None
LOCALE : None.None
pandas : 1.1.2
numpy : 1.18.1
pytz : 2019.3
dateutil : 2.8.1
pip : 20.0.2
setuptools : 45.2.0.post20200210
Cython : 0.29.15
pytest : 5.3.5
hypothesis : 5.5.4
sphinx : 2.4.0
blosc : None
feather : None
xlsxwriter : 1.2.7
lxml.etree : 4.5.0
html5lib : 1.0.1
pymysql : 0.9.3
psycopg2 : None
jinja2 : 2.11.1
IPython : 7.12.0
pandas_datareader: None
bs4 : 4.8.2
bottleneck : 1.3.2
fsspec : 0.6.2
fastparquet : None
gcsfs : None
matplotlib : 3.1.3
numexpr : 2.7.1
odfpy : None
openpyxl : 3.0.3
pandas_gbq : None
pyarrow : None
pytables : None
pyxlsb : None
s3fs : None
scipy : 1.4.1
sqlalchemy : 1.3.13
tables : 3.6.1
tabulate : None
xarray : None
xlrd : 1.2.0
xlwt : 1.3.0
numba : 0.48.0
</details>
author:
url:https://github.com/zxymath
type:Person
name:zxymath
datePublished:2020-09-13T09:48:31.000Z
interactionStatistic:
type:InteractionCounter
interactionType:https://schema.org/CommentAction
userInteractionCount:4
url:https://github.com/36327/pandas/issues/36327
context:https://schema.org
headline:BUG: Get wrong result when groupby category column with dropna=False
articleBody:I have confirmed this bug exists on the master branch of pandas.
```python
# Your code here
ser = pd.Series([1., 1., 1., 1.])
cat = pd.Categorical(['a', 'b', 'c', np.nan])
print(ser.groupby(cat, dropna=False).sum())
```
```
# output:
a 1.0
b 1.0
c 1.0
dtype: float64
```
#### Expected Output
```
a 1.0
b 1.0
c 1.0
NaN 1.0
dtype: float64
```
#### Output of ``pd.show_versions()``
<details>
INSTALLED VERSIONS
------------------
commit : 2a7d3326dee660824a8433ffd01065f8ac37f7d6
python : 3.7.6.final.0
python-bits : 64
OS : Windows
OS-release : 10
Version : 10.0.18362
machine : AMD64
processor : Intel64 Family 6 Model 158 Stepping 13, GenuineIntel
byteorder : little
LC_ALL : None
LANG : None
LOCALE : None.None
pandas : 1.1.2
numpy : 1.18.1
pytz : 2019.3
dateutil : 2.8.1
pip : 20.0.2
setuptools : 45.2.0.post20200210
Cython : 0.29.15
pytest : 5.3.5
hypothesis : 5.5.4
sphinx : 2.4.0
blosc : None
feather : None
xlsxwriter : 1.2.7
lxml.etree : 4.5.0
html5lib : 1.0.1
pymysql : 0.9.3
psycopg2 : None
jinja2 : 2.11.1
IPython : 7.12.0
pandas_datareader: None
bs4 : 4.8.2
bottleneck : 1.3.2
fsspec : 0.6.2
fastparquet : None
gcsfs : None
matplotlib : 3.1.3
numexpr : 2.7.1
odfpy : None
openpyxl : 3.0.3
pandas_gbq : None
pyarrow : None
pytables : None
pyxlsb : None
s3fs : None
scipy : 1.4.1
sqlalchemy : 1.3.13
tables : 3.6.1
tabulate : None
xarray : None
xlrd : 1.2.0
xlwt : 1.3.0
numba : 0.48.0
</details>
author:
url:https://github.com/zxymath
type:Person
name:zxymath
datePublished:2020-09-13T09:48:31.000Z
interactionStatistic:
type:InteractionCounter
interactionType:https://schema.org/CommentAction
userInteractionCount:4
url:https://github.com/36327/pandas/issues/36327
Person:
url:https://github.com/zxymath
name:zxymath
url:https://github.com/zxymath
name:zxymath
InteractionCounter:
interactionType:https://schema.org/CommentAction
userInteractionCount:4
interactionType:https://schema.org/CommentAction
userInteractionCount:4
External Links {π}(2)
Analytics and Tracking {π}
- Site Verification - Google
Libraries {π}
- Clipboard.js
- D3.js
- Lodash
Emails and Hosting {βοΈ}
Mail Servers:
- aspmx.l.google.com
- alt1.aspmx.l.google.com
- alt2.aspmx.l.google.com
- alt3.aspmx.l.google.com
- alt4.aspmx.l.google.com
Name Servers:
- dns1.p08.nsone.net
- dns2.p08.nsone.net
- dns3.p08.nsone.net
- dns4.p08.nsone.net
- ns-1283.awsdns-32.org
- ns-1707.awsdns-21.co.uk
- ns-421.awsdns-52.com
- ns-520.awsdns-01.net