Here's how GITHUB.COM makes money* and how much!

*Please read our disclaimer before using our estimates.
Loading...

GITHUB . COM {}

Detected CMS Systems:

  1. Analyzed Page
  2. Matching Content Categories
  3. CMS
  4. Monthly Traffic Estimate
  5. How Does Github.com Make Money
  6. How Much Does Github.com Make
  7. Wordpress Themes And Plugins
  8. Keywords
  9. Topics
  10. Payment Methods
  11. Questions
  12. Schema
  13. External Links
  14. Analytics And Tracking
  15. Libraries
  16. Hosting Providers

We are analyzing https://github.com/pandas-dev/pandas/issues/26454.

Title:
GroupBy nth with Categorical, NA Data and dropna Β· Issue #26454 Β· pandas-dev/pandas
Description:
The nth method of GroupBy objects can accept a dropna keyword, but it doesn't handle Categorical data appropriately. For instance: In [9]: cat = pd.Categorical(['a', np.nan, np.nan], ca...
Website Age:
17 years and 8 months (reg. 2007-10-09).

Matching Content Categories {πŸ“š}

  • Science
  • Social Networks
  • Mobile Technology & AI

Content Management System {πŸ“}

What CMS is github.com built with?


Github.com operates using WORDPRESS.

Traffic Estimate {πŸ“ˆ}

What is the average monthly size of github.com audience?

πŸš€πŸŒ  Tremendous Traffic: 10M - 20M visitors per month


Based on our best estimate, this website will receive around 10,000,003 visitors per month in the current month.

check SE Ranking
check Ahrefs
check Similarweb
check Ubersuggest
check Semrush

How Does Github.com Make Money? {πŸ’Έ}


Subscription Packages {πŸ’³}

We've located a dedicated page on github.com that might include details about subscription plans or recurring payments. We identified it based on the word pricing in one of its internal links. Below, you'll find additional estimates for its monthly recurring revenues.

How Much Does Github.com Make? {πŸ’°}


Subscription Packages {πŸ’³}

Prices on github.com are in US Dollars ($). They range from $4.00/month to $21.00/month.
We estimate that the site has approximately 4,989,880 paying customers.
The estimated monthly recurring revenue (MRR) is $20,957,498.
The estimated annual recurring revenues (ARR) are $251,489,970.

Wordpress Themes and Plugins {🎨}

What WordPress theme does this site use?

It is strange but we were not able to detect any theme on the page.

What WordPress plugins does this website use?

It is strange but we were not able to detect any plugins on the page.

Keywords {πŸ”}

categorical, ser, data, willayd, cat, groupby, dropna, npnan, elements, values, dropnaall, length, sign, nth, type, projects, issue, dfgroupbycatsernth, valueerror, mismatch, expected, axis, jorisvandenbossche, commented, member, object, bug, navigation, issues, pull, requests, actions, security, closed, method, doesnt, pdcategoricala, categoriesa, pdseries, pddataframecat, dtype, int, added, missingdata, pdnat, pdna, isnull, interpolate, mentioned, handling,

Topics {βœ’οΈ}

categorical data type projects nth method interpolate type comment metadata assignees object data na data df['cat'] = df['cat'] handling na values projects milestone groupby objects bug categorical observed=true np separate issues groupby expected axis nonsensical result categories matches makes sense worth calling milestone relationships length mismatch na values categories=['a' github dropna keyword cat = pd df = pd ser cat ser = pd dtype int64 observed nth 3 elements 2 elements object seriesgroupby na {'cat' cat 'cat' df values length pd 'ser' ser}

Payment Methods {πŸ“Š}

  • Braintree

Questions {❓}

  • Already have an account?

Schema {πŸ—ΊοΈ}

DiscussionForumPosting:
      context:https://schema.org
      headline:GroupBy nth with Categorical, NA Data and dropna
      articleBody:The `nth` method of GroupBy objects can accept a `dropna` keyword, but it doesn't handle Categorical data appropriately. For instance: ```python-traceback In [9]: cat = pd.Categorical(['a', np.nan, np.nan], categories=['a', 'b']) ...: ser = pd.Series([1, 2, 3]) ...: df = pd.DataFrame({'cat': cat, 'ser': ser}) In [10]: df.groupby('cat')['ser'].nth(0, dropna='all') ValueError: Length mismatch: Expected axis has 3 elements, new values have 2 elements In [11]: df.groupby('cat', observed=True)['ser'].nth(0, dropna='all') ValueError: Length mismatch: Expected axis has 3 elements, new values have 1 elements ``` Note that you can get a nonsensical result if the length of the categories matches the length of the Categorical: ```python-traceback In [9]: cat = pd.Categorical(['a', np.nan, np.nan], categories=['a', 'b', 'c']) ...: ser = pd.Series([1, 2, 3]) ...: df = pd.DataFrame({'cat': cat, 'ser': ser}) In [10]: df.groupby('cat')['ser'].nth(0, dropna='all') Out[12]: cat a 1 b 2 c 3 Name: ser, dtype: int64 ``` I'm not sure it makes sense to specify both observed and dropna anyway, so I *think* we should be raising if a categorical with NA values is detected within that method @TomAugspurger
      author:
         url:https://github.com/WillAyd
         type:Person
         name:WillAyd
      datePublished:2019-05-19T02:30:51.000Z
      interactionStatistic:
         type:InteractionCounter
         interactionType:https://schema.org/CommentAction
         userInteractionCount:3
      url:https://github.com/26454/pandas/issues/26454
      context:https://schema.org
      headline:GroupBy nth with Categorical, NA Data and dropna
      articleBody:The `nth` method of GroupBy objects can accept a `dropna` keyword, but it doesn't handle Categorical data appropriately. For instance: ```python-traceback In [9]: cat = pd.Categorical(['a', np.nan, np.nan], categories=['a', 'b']) ...: ser = pd.Series([1, 2, 3]) ...: df = pd.DataFrame({'cat': cat, 'ser': ser}) In [10]: df.groupby('cat')['ser'].nth(0, dropna='all') ValueError: Length mismatch: Expected axis has 3 elements, new values have 2 elements In [11]: df.groupby('cat', observed=True)['ser'].nth(0, dropna='all') ValueError: Length mismatch: Expected axis has 3 elements, new values have 1 elements ``` Note that you can get a nonsensical result if the length of the categories matches the length of the Categorical: ```python-traceback In [9]: cat = pd.Categorical(['a', np.nan, np.nan], categories=['a', 'b', 'c']) ...: ser = pd.Series([1, 2, 3]) ...: df = pd.DataFrame({'cat': cat, 'ser': ser}) In [10]: df.groupby('cat')['ser'].nth(0, dropna='all') Out[12]: cat a 1 b 2 c 3 Name: ser, dtype: int64 ``` I'm not sure it makes sense to specify both observed and dropna anyway, so I *think* we should be raising if a categorical with NA values is detected within that method @TomAugspurger
      author:
         url:https://github.com/WillAyd
         type:Person
         name:WillAyd
      datePublished:2019-05-19T02:30:51.000Z
      interactionStatistic:
         type:InteractionCounter
         interactionType:https://schema.org/CommentAction
         userInteractionCount:3
      url:https://github.com/26454/pandas/issues/26454
Person:
      url:https://github.com/WillAyd
      name:WillAyd
      url:https://github.com/WillAyd
      name:WillAyd
InteractionCounter:
      interactionType:https://schema.org/CommentAction
      userInteractionCount:3
      interactionType:https://schema.org/CommentAction
      userInteractionCount:3

Analytics and Tracking {πŸ“Š}

  • Site Verification - Google

Libraries {πŸ“š}

  • Clipboard.js
  • D3.js
  • Lodash

Emails and Hosting {βœ‰οΈ}

Mail Servers:

  • aspmx.l.google.com
  • alt1.aspmx.l.google.com
  • alt2.aspmx.l.google.com
  • alt3.aspmx.l.google.com
  • alt4.aspmx.l.google.com

Name Servers:

  • dns1.p08.nsone.net
  • dns2.p08.nsone.net
  • dns3.p08.nsone.net
  • dns4.p08.nsone.net
  • ns-1283.awsdns-32.org
  • ns-1707.awsdns-21.co.uk
  • ns-421.awsdns-52.com
  • ns-520.awsdns-01.net
9.09s.