Here's how DOI.ORG makes money* and how much!

*Please read our disclaimer before using our estimates.
Loading...

DOI . ORG {}

  1. Analyzed Page
  2. Matching Content Categories
  3. CMS
  4. Monthly Traffic Estimate
  5. How Does Doi.org Make Money
  6. Keywords
  7. Topics
  8. Schema
  9. External Links
  10. Analytics And Tracking
  11. Libraries
  12. Hosting Providers
  13. CDN Services

We began analyzing https://link.springer.com/article/10.1007/BF01833260, but it redirected us to https://link.springer.com/article/10.1007/BF01833260. The analysis below is for the second page.

Title[redir]:
Urokinase (uPA) and its inhibitor PAI-1 are strong and independent prognostic factors in node-negative breast cancer | Breast Cancer Research and Treatment
Description:
Evidence has accumulated that invasion and metastasis in solid tumors require the action of tumor-associated proteases, which promote the dissolution of the surrounding tumor matrix and the basement membranes. The serine protease urokinase-type plasminogen activator (uPA), which is elevated in solid tumors, appears to play a key role in these processes. We used enzyme-linked immunoassays (ELISA) to test for uPA antigen and its inhibitor PAI-1 in tumor tissue extracts of 247 breast cancer patients who were enrolled in a prospective study. The relation of these data to known prognostic factors and to other variables such as DNA analysis and cathepsin D was studied. Disease-free and overall survival were analyzed according to Cox

Matching Content Categories {📚}

  • Education
  • Health & Fitness
  • Science

Content Management System {📝}

What CMS is doi.org built with?

Custom-built

No common CMS systems were detected on Doi.org, and no known web development framework was identified.

Traffic Estimate {📈}

What is the average monthly size of doi.org audience?

🌠 Phenomenal Traffic: 5M - 10M visitors per month


Based on our best estimate, this website will receive around 5,000,019 visitors per month in the current month.
However, some sources were not loaded, we suggest to reload the page to get complete results.

check SE Ranking
check Ahrefs
check Similarweb
check Ubersuggest
check Semrush

How Does Doi.org Make Money? {💸}

We can't figure out the monetization strategy.

While profit motivates many websites, others exist to inspire, entertain, or provide valuable resources. Websites have a variety of goals. And this might be one of them. Doi.org might have a hidden revenue stream, but it's not something we can detect.

Keywords {🔍}

google, scholar, cancer, breast, pubmed, upa, plasminogen, human, activator, patients, prognostic, schmitt, pai, graeff, nodenegative, jänicke, tumors, tumor, res, article, urokinase, relapse, content, inhibitor, independent, factors, urokinasetype, cathepsin, survival, high, primary, prognosis, med, mcguire, stat, privacy, cookies, research, fibrinolysis, hafter, data, information, publish, search, phd, ulm, tissue, access, activators, degradation,

Topics {✒️}

nadia harbeck md kurt ulm phd node-negative breast cancer short-term organ culture month download article/chapter urokinase-type plasminogen activator tissue-type plasminogen activators lothar pache md node-negative patients early breast cancer privacy choices/manage cookies human breast cancer manfred schmitt phd urokinase plasminogen activator urokinase-plasminogen activator lymph node status human plasminogen activator breast cancer patients primary breast cancer aggressive breast carcinomas plasminogen activator content human ovarian carcinoma metastatic colon tumors wilhelm sander-stiftung proportional hazard model full article pdf de la garza human a431 cells human granulocytes stimulated paraffin-embedded tissue plasminogen activator secretion european economic area 97 ng/mg protein 18 ng/mg protein kluwer academic publishers fibrin-fibronectin compounds tumor tissue extracts estrogen receptor assays independent prognostic factor conditions privacy policy gastric tumor explants human colonic tumors stroma-derived fibrin tumor cell prourokinase independent prognostic factors cox regression model pro-urokinase receptors surrounding tumor matrix accepting optional cookies enzyme-linked immunoassays

Schema {🗺️}

WebPage:
      mainEntity:
         headline:Urokinase (uPA) and its inhibitor PAI-1 are strong and independent prognostic factors in node-negative breast cancer
         description:Evidence has accumulated that invasion and metastasis in solid tumors require the action of tumor-associated proteases, which promote the dissolution of the surrounding tumor matrix and the basement membranes. The serine protease urokinase-type plasminogen activator (uPA), which is elevated in solid tumors, appears to play a key role in these processes. We used enzyme-linked immunoassays (ELISA) to test for uPA antigen and its inhibitor PAI-1 in tumor tissue extracts of 247 breast cancer patients who were enrolled in a prospective study. The relation of these data to known prognostic factors and to other variables such as DNA analysis and cathepsin D was studied. Disease-free and overall survival were analyzed according to Cox's proportional hazard model. The major new finding is that breast cancer patients with either high uPA (>2.97 ng/mg protein) or high content of the uPA inhibitor PAI-1 (>2.18 ng/mg protein) in their primary tumors have an increased risk of relapse and death. Multivariate analyses revealed uPA to be an independent and strong prognostic factor. The impact of uPA is as high as that of the lymph node status. In node-negative patients the impact of uPA is closely followed by that of PAI-1. Since uPA and PAI-1 are independent prognostic factors, the node-negative patients could be subdivided further by combining these two variables. In this refined analysis, patients whose primary tumors have lower levels of both antigens evidently have a very low risk of relapse (93% disease-free survival at three years) in contrast to patients with high uPA and high PAI-1 (55% disease-free survival at three years). The combination of uPA and PAI-1 in our group of patients with axillary node-negative breast cancer allows us to identify the 45 percent of patients having an increased risk of relapse. Consequently, more than half of the patients had less than a 10% probability of relapse and thus would possibly be candidates for being spared the necessity of adjuvant therapy.
         datePublished:
         dateModified:
         pageStart:195
         pageEnd:208
         sameAs:https://doi.org/10.1007/BF01833260
         keywords:
            protease
            inhibitor
            urokinase
            uPA
            PAI-1
            cathepsin D
            prognosis
            breast cancer
            axillary node-negative patients
            Oncology
         image:
         isPartOf:
            name:Breast Cancer Research and Treatment
            issn:
               1573-7217
               0167-6806
            volumeNumber:24
            type:
               Periodical
               PublicationVolume
         publisher:
            name:Kluwer Academic Publishers
            logo:
               url:https://www.springernature.com/app-sn/public/images/logo-springernature.png
               type:ImageObject
            type:Organization
         author:
               name:Fritz Jänicke
               affiliation:
                     name:Frauenklinik and Poliklinik der Technischen Universität München
                     address:
                        name:Frauenklinik and Poliklinik der Technischen Universität München, FRG
                        type:PostalAddress
                     type:Organization
               type:Person
               name:Manfred Schmitt
               affiliation:
                     name:Frauenklinik and Poliklinik der Technischen Universität München
                     address:
                        name:Frauenklinik and Poliklinik der Technischen Universität München, FRG
                        type:PostalAddress
                     type:Organization
               type:Person
               name:Lothar Pache
               affiliation:
                     name:Frauenklinik and Poliklinik der Technischen Universität München
                     address:
                        name:Frauenklinik and Poliklinik der Technischen Universität München, FRG
                        type:PostalAddress
                     type:Organization
               type:Person
               name:Kurt Ulm
               affiliation:
                     name:Institut für Medizinische Statistik und Epidemiologie der Technischen Universität München
                     address:
                        name:Institut für Medizinische Statistik und Epidemiologie der Technischen Universität München, FRG
                        type:PostalAddress
                     type:Organization
               type:Person
               name:Nadia Harbeck
               affiliation:
                     name:Frauenklinik and Poliklinik der Technischen Universität München
                     address:
                        name:Frauenklinik and Poliklinik der Technischen Universität München, FRG
                        type:PostalAddress
                     type:Organization
               type:Person
               name:Heinz Höfler
               affiliation:
                     name:Institut für Allgemeine Pathologie und Pathologische Anatomie der Technischen Universität München
                     address:
                        name:Institut für Allgemeine Pathologie und Pathologische Anatomie der Technischen Universität München, FRG
                        type:PostalAddress
                     type:Organization
               type:Person
               name:Henner Graeff
               affiliation:
                     name:Frauenklinik and Poliklinik der Technischen Universität München
                     address:
                        name:Frauenklinik and Poliklinik der Technischen Universität München, FRG
                        type:PostalAddress
                     type:Organization
               type:Person
         isAccessibleForFree:
         hasPart:
            isAccessibleForFree:
            cssSelector:.main-content
            type:WebPageElement
         type:ScholarlyArticle
      context:https://schema.org
ScholarlyArticle:
      headline:Urokinase (uPA) and its inhibitor PAI-1 are strong and independent prognostic factors in node-negative breast cancer
      description:Evidence has accumulated that invasion and metastasis in solid tumors require the action of tumor-associated proteases, which promote the dissolution of the surrounding tumor matrix and the basement membranes. The serine protease urokinase-type plasminogen activator (uPA), which is elevated in solid tumors, appears to play a key role in these processes. We used enzyme-linked immunoassays (ELISA) to test for uPA antigen and its inhibitor PAI-1 in tumor tissue extracts of 247 breast cancer patients who were enrolled in a prospective study. The relation of these data to known prognostic factors and to other variables such as DNA analysis and cathepsin D was studied. Disease-free and overall survival were analyzed according to Cox's proportional hazard model. The major new finding is that breast cancer patients with either high uPA (>2.97 ng/mg protein) or high content of the uPA inhibitor PAI-1 (>2.18 ng/mg protein) in their primary tumors have an increased risk of relapse and death. Multivariate analyses revealed uPA to be an independent and strong prognostic factor. The impact of uPA is as high as that of the lymph node status. In node-negative patients the impact of uPA is closely followed by that of PAI-1. Since uPA and PAI-1 are independent prognostic factors, the node-negative patients could be subdivided further by combining these two variables. In this refined analysis, patients whose primary tumors have lower levels of both antigens evidently have a very low risk of relapse (93% disease-free survival at three years) in contrast to patients with high uPA and high PAI-1 (55% disease-free survival at three years). The combination of uPA and PAI-1 in our group of patients with axillary node-negative breast cancer allows us to identify the 45 percent of patients having an increased risk of relapse. Consequently, more than half of the patients had less than a 10% probability of relapse and thus would possibly be candidates for being spared the necessity of adjuvant therapy.
      datePublished:
      dateModified:
      pageStart:195
      pageEnd:208
      sameAs:https://doi.org/10.1007/BF01833260
      keywords:
         protease
         inhibitor
         urokinase
         uPA
         PAI-1
         cathepsin D
         prognosis
         breast cancer
         axillary node-negative patients
         Oncology
      image:
      isPartOf:
         name:Breast Cancer Research and Treatment
         issn:
            1573-7217
            0167-6806
         volumeNumber:24
         type:
            Periodical
            PublicationVolume
      publisher:
         name:Kluwer Academic Publishers
         logo:
            url:https://www.springernature.com/app-sn/public/images/logo-springernature.png
            type:ImageObject
         type:Organization
      author:
            name:Fritz Jänicke
            affiliation:
                  name:Frauenklinik and Poliklinik der Technischen Universität München
                  address:
                     name:Frauenklinik and Poliklinik der Technischen Universität München, FRG
                     type:PostalAddress
                  type:Organization
            type:Person
            name:Manfred Schmitt
            affiliation:
                  name:Frauenklinik and Poliklinik der Technischen Universität München
                  address:
                     name:Frauenklinik and Poliklinik der Technischen Universität München, FRG
                     type:PostalAddress
                  type:Organization
            type:Person
            name:Lothar Pache
            affiliation:
                  name:Frauenklinik and Poliklinik der Technischen Universität München
                  address:
                     name:Frauenklinik and Poliklinik der Technischen Universität München, FRG
                     type:PostalAddress
                  type:Organization
            type:Person
            name:Kurt Ulm
            affiliation:
                  name:Institut für Medizinische Statistik und Epidemiologie der Technischen Universität München
                  address:
                     name:Institut für Medizinische Statistik und Epidemiologie der Technischen Universität München, FRG
                     type:PostalAddress
                  type:Organization
            type:Person
            name:Nadia Harbeck
            affiliation:
                  name:Frauenklinik and Poliklinik der Technischen Universität München
                  address:
                     name:Frauenklinik and Poliklinik der Technischen Universität München, FRG
                     type:PostalAddress
                  type:Organization
            type:Person
            name:Heinz Höfler
            affiliation:
                  name:Institut für Allgemeine Pathologie und Pathologische Anatomie der Technischen Universität München
                  address:
                     name:Institut für Allgemeine Pathologie und Pathologische Anatomie der Technischen Universität München, FRG
                     type:PostalAddress
                  type:Organization
            type:Person
            name:Henner Graeff
            affiliation:
                  name:Frauenklinik and Poliklinik der Technischen Universität München
                  address:
                     name:Frauenklinik and Poliklinik der Technischen Universität München, FRG
                     type:PostalAddress
                  type:Organization
            type:Person
      isAccessibleForFree:
      hasPart:
         isAccessibleForFree:
         cssSelector:.main-content
         type:WebPageElement
["Periodical","PublicationVolume"]:
      name:Breast Cancer Research and Treatment
      issn:
         1573-7217
         0167-6806
      volumeNumber:24
Organization:
      name:Kluwer Academic Publishers
      logo:
         url:https://www.springernature.com/app-sn/public/images/logo-springernature.png
         type:ImageObject
      name:Frauenklinik and Poliklinik der Technischen Universität München
      address:
         name:Frauenklinik and Poliklinik der Technischen Universität München, FRG
         type:PostalAddress
      name:Frauenklinik and Poliklinik der Technischen Universität München
      address:
         name:Frauenklinik and Poliklinik der Technischen Universität München, FRG
         type:PostalAddress
      name:Frauenklinik and Poliklinik der Technischen Universität München
      address:
         name:Frauenklinik and Poliklinik der Technischen Universität München, FRG
         type:PostalAddress
      name:Institut für Medizinische Statistik und Epidemiologie der Technischen Universität München
      address:
         name:Institut für Medizinische Statistik und Epidemiologie der Technischen Universität München, FRG
         type:PostalAddress
      name:Frauenklinik and Poliklinik der Technischen Universität München
      address:
         name:Frauenklinik and Poliklinik der Technischen Universität München, FRG
         type:PostalAddress
      name:Institut für Allgemeine Pathologie und Pathologische Anatomie der Technischen Universität München
      address:
         name:Institut für Allgemeine Pathologie und Pathologische Anatomie der Technischen Universität München, FRG
         type:PostalAddress
      name:Frauenklinik and Poliklinik der Technischen Universität München
      address:
         name:Frauenklinik and Poliklinik der Technischen Universität München, FRG
         type:PostalAddress
ImageObject:
      url:https://www.springernature.com/app-sn/public/images/logo-springernature.png
Person:
      name:Fritz Jänicke
      affiliation:
            name:Frauenklinik and Poliklinik der Technischen Universität München
            address:
               name:Frauenklinik and Poliklinik der Technischen Universität München, FRG
               type:PostalAddress
            type:Organization
      name:Manfred Schmitt
      affiliation:
            name:Frauenklinik and Poliklinik der Technischen Universität München
            address:
               name:Frauenklinik and Poliklinik der Technischen Universität München, FRG
               type:PostalAddress
            type:Organization
      name:Lothar Pache
      affiliation:
            name:Frauenklinik and Poliklinik der Technischen Universität München
            address:
               name:Frauenklinik and Poliklinik der Technischen Universität München, FRG
               type:PostalAddress
            type:Organization
      name:Kurt Ulm
      affiliation:
            name:Institut für Medizinische Statistik und Epidemiologie der Technischen Universität München
            address:
               name:Institut für Medizinische Statistik und Epidemiologie der Technischen Universität München, FRG
               type:PostalAddress
            type:Organization
      name:Nadia Harbeck
      affiliation:
            name:Frauenklinik and Poliklinik der Technischen Universität München
            address:
               name:Frauenklinik and Poliklinik der Technischen Universität München, FRG
               type:PostalAddress
            type:Organization
      name:Heinz Höfler
      affiliation:
            name:Institut für Allgemeine Pathologie und Pathologische Anatomie der Technischen Universität München
            address:
               name:Institut für Allgemeine Pathologie und Pathologische Anatomie der Technischen Universität München, FRG
               type:PostalAddress
            type:Organization
      name:Henner Graeff
      affiliation:
            name:Frauenklinik and Poliklinik der Technischen Universität München
            address:
               name:Frauenklinik and Poliklinik der Technischen Universität München, FRG
               type:PostalAddress
            type:Organization
PostalAddress:
      name:Frauenklinik and Poliklinik der Technischen Universität München, FRG
      name:Frauenklinik and Poliklinik der Technischen Universität München, FRG
      name:Frauenklinik and Poliklinik der Technischen Universität München, FRG
      name:Institut für Medizinische Statistik und Epidemiologie der Technischen Universität München, FRG
      name:Frauenklinik and Poliklinik der Technischen Universität München, FRG
      name:Institut für Allgemeine Pathologie und Pathologische Anatomie der Technischen Universität München, FRG
      name:Frauenklinik and Poliklinik der Technischen Universität München, FRG
WebPageElement:
      isAccessibleForFree:
      cssSelector:.main-content

External Links {🔗}(163)

Analytics and Tracking {📊}

  • Google Tag Manager

Libraries {📚}

  • Clipboard.js
  • Prism.js

Emails and Hosting {✉️}

Mail Servers:

  • mx.zoho.eu
  • mx2.zoho.eu
  • mx3.zoho.eu

Name Servers:

  • josh.ns.cloudflare.com
  • zita.ns.cloudflare.com

CDN Services {📦}

  • Crossref

8.68s.