Here's how NATURE.COM makes money* and how much!

*Please read our disclaimer before using our estimates.
Loading...

NATURE . COM {}

  1. Analyzed Page
  2. Matching Content Categories
  3. CMS
  4. Monthly Traffic Estimate
  5. How Does Nature.com Make Money
  6. How Much Does Nature.com Make
  7. Keywords
  8. Topics
  9. Questions
  10. Schema
  11. Social Networks
  12. External Links
  13. Analytics And Tracking
  14. Libraries
  15. Hosting Providers
  16. CDN Services

We are analyzing https://www.nature.com/articles/s41467-020-17041-7.

Title:
Analysis of compositions of microbiomes with bias correction | Nature Communications
Description:
Differential abundance (DA) analysis of microbiome data continues to be a challenging problem due to the complexity of the data. In this article we define the notion of “sampling fraction” and demonstrate a major hurdle in performing DA analysis of microbiome data is the bias introduced by differences in the sampling fractions across samples. We introduce a methodology called Analysis of Compositions of Microbiomes with Bias Correction (ANCOM-BC), which estimates the unknown sampling fractions and corrects the bias induced by their differences among samples. The absolute abundance data are modeled using a linear regression framework. This formulation makes a fundamental advancement in the field because, unlike the existing methods, it (a) provides statistically valid test with appropriate p-values, (b) provides confidence intervals for differential abundance of each taxon, (c) controls the False Discovery Rate (FDR), (d) maintains adequate power, and (e) is computationally simple to implement. Differential abundance analysis of microbiome data continues to be challenging due to data complexity. The authors propose a method which estimates the unknown sampling fractions and corrects the bias induced by their differences among samples.
Website Age:
30 years and 10 months (reg. 1994-08-11).

Matching Content Categories {📚}

  • Education
  • Science
  • Social Networks

Content Management System {📝}

What CMS is nature.com built with?

Custom-built

No common CMS systems were detected on Nature.com, and no known web development framework was identified.

Traffic Estimate {📈}

What is the average monthly size of nature.com audience?

🌠 Phenomenal Traffic: 5M - 10M visitors per month


Based on our best estimate, this website will receive around 5,000,019 visitors per month in the current month.
However, some sources were not loaded, we suggest to reload the page to get complete results.

check SE Ranking
check Ahrefs
check Similarweb
check Ubersuggest
check Semrush

How Does Nature.com Make Money? {💸}


Display Ads {🎯}


The website utilizes display ads within its content to generate revenue. Check the next section for further revenue estimates.

Ads are managed by yourbow.com. Particular relationships are as follows:

Direct Advertisers (10)
google.com, pmc.com, doceree.com, yourbow.com, audienciad.com, onlinemediasolutions.com, advibe.media, aps.amazon.com, getmediamx.com, onomagic.com

Reseller Advertisers (38)
conversantmedia.com, rubiconproject.com, pubmatic.com, appnexus.com, openx.com, smartadserver.com, lijit.com, sharethrough.com, video.unrulymedia.com, google.com, yahoo.com, triplelift.com, onetag.com, sonobi.com, contextweb.com, 33across.com, indexexchange.com, media.net, themediagrid.com, adform.com, richaudience.com, sovrn.com, improvedigital.com, freewheel.tv, smaato.com, yieldmo.com, amxrtb.com, adyoulike.com, adpone.com, criteo.com, smilewanted.com, 152media.info, e-planning.net, smartyads.com, loopme.com, opera.com, mediafuse.com, betweendigital.com

How Much Does Nature.com Make? {💰}


Display Ads {🎯}

$63,100 per month
According to our algorithms, Nature.com's monthly online income from display advertising ranges from $42,042 to $115,616.

Keywords {🔍}

data, ancombc, sampling, abundance, taxon, fig, article, fdr, analysis, sample, supplementary, methods, taxa, absolute, samples, google, scholar, microbiome, bias, group, fraction, fractions, size, relative, groups, nature, differential, iin, test, methodology, ancom, differences, abundant, power, results, ecosystems, gut, infants, normalization, method, assumption, iiprime, due, model, simulation, ecosystem, differentially, hypothesis, estimator, iprime,

Topics {✒️}

org/packages/release/bioc/vignettes/edger/inst/doc/edgerusersguide {\hat{\sigma }}_{i1}^{2}+{\hat{\sigma }}_{i2}^{2} {\hat{\mu }}_{i1}-{\hat{\mu }}_{i2} {\hat{\mu }}_{i1}-{\hat{\mu }}_{i2} }={\hat{\mu }}_{i1}-{\hat{\mu }}_{i2} }_{1}}\frac{1}{{\hat{\nu }}_{i1}^{2}}+{\sum }_{ }}_{1}}\frac{1}{{\hat{\nu }}_{i1}^{2}}+{\sum }_{ {\hat{\sigma }}_{ij}^{2}-{\sigma }_{ij}^{2} {\mu }_{i1}-{\mu }_{i2} }_{0}}\frac{1}{{\hat{\nu }}_{i0}^{2}}+{\sum }_{ }}_{0}}\frac{1}{{\hat{\nu }}_{i0}^{2}}+{\sum }_{ }}_{1}}{{\hat{\nu }}_{i1}^{2}}+{\sum }_{ }}_{2}}{{\hat{\nu }}_{i2}^{2}}}{{\sum }_{ =1}^{2}{\hat{\sigma }}_{ij}^{2}=\mathop{\sum }\limits_{ nature portfolio }_{1}}\frac{1}{{\nu }_{i1}^{2}}+{\sum }_{ $${\hat{\nu }}_{i0}^{2}=\mathop{\sum }\limits_{ }_{jk}+{\mu }_{ij}+{\epsilon }_{ijk} }}_{2}}\frac{1}{{\hat{\nu }}_{i2}^{2}}} }\left\{\begin{array}{ll}\hskip -30pt 0&{\rm{ }_{0}}\frac{1}{{\nu }_{i0}^{2}}+{\sum }_{ }}_{jk}-{\hat{\mu }}_{ij} }_{1}}{{\nu }_{i1}^{2}}+{\sum }_{ }_{2}}{{\nu }_{i2}^{2}}}{{\sum }_{ }}{{\hat{\nu }}_{i0}^{2}}+{\sum }_{ }}_{jk}-{\hat{\delta }}_{rj} $${\hat{\sigma }}_{ij}^{2}=\frac{1}{{ 96\scriptstyle{\sqrt{\frac{{\hat{ $$\frac{{\hat{\mu }}_{ij} privacy policy }_{2}}\frac{1}{{\nu }_{i2}^{2}}}+{ }_{2}}\frac{1}{{\nu }_{i2}^{2}}} {\hat{\mu }}_{i1} }{\sigma }_{ijk}^{2}+\mathop{\sum }\limits_{ {\hat{\mu }}_{i2} }{\sigma }_{ii^{\prime} jk}\le {\hat{\mu }}_{ij}={\overline{ }_{jk}{\theta }_{ij}\\ var {\hat{\delta }}_{{\rm{em}}} {\hat{\delta }}_{{\rm{em}}} {\hat{\delta }}_{{\rm{wls}}} {\hat{\delta }}_{{\rm{wls}}} }_{jk}+{\overline{\mu }}_{\cdot }_{jk}+{\mu }_{ij} {\sigma }_{0}^{2}+\mathop{\sum }\limits_{ {\sigma }_{ii^{\prime} jk} }{\sigma }_{ii^{\prime} jk}}{{ }{\sigma }_{ii^{\prime} jk} {\hat{\sigma }}_{ij} }{{\hat{\sigma }}_{ij}}{

Questions {❓}

  • Com/articles/d41586-019-00857-9?

Schema {🗺️}

WebPage:
      mainEntity:
         headline:Analysis of compositions of microbiomes with bias correction
         description:Differential abundance (DA) analysis of microbiome data continues to be a challenging problem due to the complexity of the data. In this article we define the notion of “sampling fraction” and demonstrate a major hurdle in performing DA analysis of microbiome data is the bias introduced by differences in the sampling fractions across samples. We introduce a methodology called Analysis of Compositions of Microbiomes with Bias Correction (ANCOM-BC), which estimates the unknown sampling fractions and corrects the bias induced by their differences among samples. The absolute abundance data are modeled using a linear regression framework. This formulation makes a fundamental advancement in the field because, unlike the existing methods, it (a) provides statistically valid test with appropriate p-values, (b) provides confidence intervals for differential abundance of each taxon, (c) controls the False Discovery Rate (FDR), (d) maintains adequate power, and (e) is computationally simple to implement. Differential abundance analysis of microbiome data continues to be challenging due to data complexity. The authors propose a method which estimates the unknown sampling fractions and corrects the bias induced by their differences among samples.
         datePublished:2020-07-14T00:00:00Z
         dateModified:2020-07-14T00:00:00Z
         pageStart:1
         pageEnd:11
         license:http://creativecommons.org/licenses/by/4.0/
         sameAs:https://doi.org/10.1038/s41467-020-17041-7
         keywords:
            Computational biology and bioinformatics
            Ecology
            Microbiology
            Science
            Humanities and Social Sciences
            multidisciplinary
         image:
            https://media.springernature.com/lw1200/springer-static/image/art%3A10.1038%2Fs41467-020-17041-7/MediaObjects/41467_2020_17041_Fig1_HTML.png
            https://media.springernature.com/lw1200/springer-static/image/art%3A10.1038%2Fs41467-020-17041-7/MediaObjects/41467_2020_17041_Fig2_HTML.png
            https://media.springernature.com/lw1200/springer-static/image/art%3A10.1038%2Fs41467-020-17041-7/MediaObjects/41467_2020_17041_Fig4_HTML.png
            https://media.springernature.com/lw1200/springer-static/image/art%3A10.1038%2Fs41467-020-17041-7/MediaObjects/41467_2020_17041_Fig5_HTML.png
            https://media.springernature.com/lw1200/springer-static/image/art%3A10.1038%2Fs41467-020-17041-7/MediaObjects/41467_2020_17041_Fig6_HTML.png
         isPartOf:
            name:Nature Communications
            issn:
               2041-1723
            volumeNumber:11
            type:
               Periodical
               PublicationVolume
         publisher:
            name:Nature Publishing Group UK
            logo:
               url:https://www.springernature.com/app-sn/public/images/logo-springernature.png
               type:ImageObject
            type:Organization
         author:
               name:Huang Lin
               url:http://orcid.org/0000-0002-4892-7871
               affiliation:
                     name:University of Pittsburgh
                     address:
                        name:Department of Biostatistics, University of Pittsburgh, Pittsburgh, USA
                        type:PostalAddress
                     type:Organization
               type:Person
               name:Shyamal Das Peddada
               affiliation:
                     name:University of Pittsburgh
                     address:
                        name:Department of Biostatistics, University of Pittsburgh, Pittsburgh, USA
                        type:PostalAddress
                     type:Organization
               email:[email protected]
               type:Person
         isAccessibleForFree:1
         type:ScholarlyArticle
      context:https://schema.org
ScholarlyArticle:
      headline:Analysis of compositions of microbiomes with bias correction
      description:Differential abundance (DA) analysis of microbiome data continues to be a challenging problem due to the complexity of the data. In this article we define the notion of “sampling fraction” and demonstrate a major hurdle in performing DA analysis of microbiome data is the bias introduced by differences in the sampling fractions across samples. We introduce a methodology called Analysis of Compositions of Microbiomes with Bias Correction (ANCOM-BC), which estimates the unknown sampling fractions and corrects the bias induced by their differences among samples. The absolute abundance data are modeled using a linear regression framework. This formulation makes a fundamental advancement in the field because, unlike the existing methods, it (a) provides statistically valid test with appropriate p-values, (b) provides confidence intervals for differential abundance of each taxon, (c) controls the False Discovery Rate (FDR), (d) maintains adequate power, and (e) is computationally simple to implement. Differential abundance analysis of microbiome data continues to be challenging due to data complexity. The authors propose a method which estimates the unknown sampling fractions and corrects the bias induced by their differences among samples.
      datePublished:2020-07-14T00:00:00Z
      dateModified:2020-07-14T00:00:00Z
      pageStart:1
      pageEnd:11
      license:http://creativecommons.org/licenses/by/4.0/
      sameAs:https://doi.org/10.1038/s41467-020-17041-7
      keywords:
         Computational biology and bioinformatics
         Ecology
         Microbiology
         Science
         Humanities and Social Sciences
         multidisciplinary
      image:
         https://media.springernature.com/lw1200/springer-static/image/art%3A10.1038%2Fs41467-020-17041-7/MediaObjects/41467_2020_17041_Fig1_HTML.png
         https://media.springernature.com/lw1200/springer-static/image/art%3A10.1038%2Fs41467-020-17041-7/MediaObjects/41467_2020_17041_Fig2_HTML.png
         https://media.springernature.com/lw1200/springer-static/image/art%3A10.1038%2Fs41467-020-17041-7/MediaObjects/41467_2020_17041_Fig4_HTML.png
         https://media.springernature.com/lw1200/springer-static/image/art%3A10.1038%2Fs41467-020-17041-7/MediaObjects/41467_2020_17041_Fig5_HTML.png
         https://media.springernature.com/lw1200/springer-static/image/art%3A10.1038%2Fs41467-020-17041-7/MediaObjects/41467_2020_17041_Fig6_HTML.png
      isPartOf:
         name:Nature Communications
         issn:
            2041-1723
         volumeNumber:11
         type:
            Periodical
            PublicationVolume
      publisher:
         name:Nature Publishing Group UK
         logo:
            url:https://www.springernature.com/app-sn/public/images/logo-springernature.png
            type:ImageObject
         type:Organization
      author:
            name:Huang Lin
            url:http://orcid.org/0000-0002-4892-7871
            affiliation:
                  name:University of Pittsburgh
                  address:
                     name:Department of Biostatistics, University of Pittsburgh, Pittsburgh, USA
                     type:PostalAddress
                  type:Organization
            type:Person
            name:Shyamal Das Peddada
            affiliation:
                  name:University of Pittsburgh
                  address:
                     name:Department of Biostatistics, University of Pittsburgh, Pittsburgh, USA
                     type:PostalAddress
                  type:Organization
            email:[email protected]
            type:Person
      isAccessibleForFree:1
["Periodical","PublicationVolume"]:
      name:Nature Communications
      issn:
         2041-1723
      volumeNumber:11
Organization:
      name:Nature Publishing Group UK
      logo:
         url:https://www.springernature.com/app-sn/public/images/logo-springernature.png
         type:ImageObject
      name:University of Pittsburgh
      address:
         name:Department of Biostatistics, University of Pittsburgh, Pittsburgh, USA
         type:PostalAddress
      name:University of Pittsburgh
      address:
         name:Department of Biostatistics, University of Pittsburgh, Pittsburgh, USA
         type:PostalAddress
ImageObject:
      url:https://www.springernature.com/app-sn/public/images/logo-springernature.png
Person:
      name:Huang Lin
      url:http://orcid.org/0000-0002-4892-7871
      affiliation:
            name:University of Pittsburgh
            address:
               name:Department of Biostatistics, University of Pittsburgh, Pittsburgh, USA
               type:PostalAddress
            type:Organization
      name:Shyamal Das Peddada
      affiliation:
            name:University of Pittsburgh
            address:
               name:Department of Biostatistics, University of Pittsburgh, Pittsburgh, USA
               type:PostalAddress
            type:Organization
      email:[email protected]
PostalAddress:
      name:Department of Biostatistics, University of Pittsburgh, Pittsburgh, USA
      name:Department of Biostatistics, University of Pittsburgh, Pittsburgh, USA

External Links {🔗}(103)

Analytics and Tracking {📊}

  • Google Tag Manager

Libraries {📚}

  • Prism.js
  • Zoom.js

Emails and Hosting {✉️}

Mail Servers:

  • mxa-002c5801.gslb.pphosted.com
  • mxb-002c5801.gslb.pphosted.com

Name Servers:

  • pdns1.ultradns.net
  • pdns2.ultradns.net
  • pdns3.ultradns.org
  • pdns4.ultradns.org
  • pdns5.ultradns.info
  • pdns6.ultradns.co.uk

CDN Services {📦}

  • Crossref

4.81s.