Here's how LINK.SPRINGER.COM makes money* and how much!

*Please read our disclaimer before using our estimates.
Loading...

LINK . SPRINGER . COM {}

  1. Analyzed Page
  2. Matching Content Categories
  3. CMS
  4. Monthly Traffic Estimate
  5. How Does Link.springer.com Make Money
  6. Keywords
  7. Topics
  8. Schema
  9. External Links
  10. Analytics And Tracking
  11. Libraries
  12. CDN Services

We are analyzing https://link.springer.com/article/10.1007/s11222-025-10644-4.

Title:
DGP-LVM: Derivative Gaussian process latent variable models | Statistics and Computing
Description:
We develop a framework for derivative Gaussian process latent variable models (DGP-LVMs) that can handle multi-dimensional output data using modified derivative covariance functions. The modifications account for complexities in the underlying data generating process such as scaled derivatives, varying information across multiple output dimensions as well as interactions between outputs. Further, our framework provides uncertainty estimates for each latent variable samples using Bayesian inference. Through extensive simulations, we demonstrate that latent variable estimation accuracy can be drastically increased by including derivative information due to our proposed covariance function modifications. The developments are motivated by a concrete biological research problem involving the estimation of the unobserved cellular ordering from single-cell RNA (scRNA) sequencing data for gene expression and its corresponding derivative information known as RNA velocity. Since the RNA velocity is only an estimate of the exact derivative information, the derivative covariance functions need to account for potential scale differences. In a real-world case study, we illustrate the application of DGP-LVMs to such scRNA sequencing data. While motivated by this biological problem, our framework is generally applicable to all kinds of latent variable estimation problems involving derivative information irrespective of the field of study.
Website Age:
28 years and 1 months (reg. 1997-05-29).

Matching Content Categories {📚}

  • Education
  • Technology & Computing
  • Science

Content Management System {📝}

What CMS is link.springer.com built with?

Custom-built

No common CMS systems were detected on Link.springer.com, and no known web development framework was identified.

Traffic Estimate {📈}

What is the average monthly size of link.springer.com audience?

🌠 Phenomenal Traffic: 5M - 10M visitors per month


Based on our best estimate, this website will receive around 7,626,182 visitors per month in the current month.

check SE Ranking
check Ahrefs
check Similarweb
check Ubersuggest
check Semrush

How Does Link.springer.com Make Money? {💸}

We're unsure how the site profits.

While many websites aim to make money, others are created to share knowledge or showcase creativity. People build websites for various reasons. This could be one of them. Link.springer.com might have a hidden revenue stream, but it's not something we can detect.

Keywords {🔍}

left, full, fracdelta, latent, mathbb, eleft, hyperparameters, delta, article, effects, derivative, varying, outputs, scenario, data, gaussian, inputs, fig, size, image, correlated, alpha, derivatives, scaled, information, model, xjrho, including, google, scholar, version, recovery, main, process, models, nature, matern, quad, variable, exp, interaction, assuming, singlecell, plots, covariance, systems, text, fracsqrtxi, research, statistics,

Topics {✒️}

single-cell rna-seq data cohort-wide differential expression frac{\delta }{\delta x_j}\left frac{\delta }{\delta x_i}y_i frac{\delta }{\delta x_i}\left single-cell rna-sequencing hierarchical bayesian modelling single-cell pseudotime inference stochastic gene expression stochastic variational inference frac{\delta }{\delta single-cell rna month download article/chapter $$\begin{aligned} \text {cov} gaussian process models gaussian process model single-cell data single-cell proteogenomics related subjects sparse gaussian processes real-world case study k_{10}&= \frac{\delta k_{01}&= \frac{\delta scaling gaussian processes bayesian multilevel models supporting soham mukherjee latent variable samples simulation-based inference full article pdf privacy choices/manage cookies cell fate decisions generalizing rna velocity rna velocity fields holds exclusive rights transient cell states high dimensional data latent inputs fig model evaluation plots exact derivative information derivative covariance functions check access inducing variables instant access scrna sequencing data gaussian processes specific derivative forms } \end{aligned}$$ fig tail ess plots multiple output dimensions machine learning research

Schema {🗺️}

WebPage:
      mainEntity:
         headline:DGP-LVM: Derivative Gaussian process latent variable models
         description:We develop a framework for derivative Gaussian process latent variable models (DGP-LVMs) that can handle multi-dimensional output data using modified derivative covariance functions. The modifications account for complexities in the underlying data generating process such as scaled derivatives, varying information across multiple output dimensions as well as interactions between outputs. Further, our framework provides uncertainty estimates for each latent variable samples using Bayesian inference. Through extensive simulations, we demonstrate that latent variable estimation accuracy can be drastically increased by including derivative information due to our proposed covariance function modifications. The developments are motivated by a concrete biological research problem involving the estimation of the unobserved cellular ordering from single-cell RNA (scRNA) sequencing data for gene expression and its corresponding derivative information known as RNA velocity. Since the RNA velocity is only an estimate of the exact derivative information, the derivative covariance functions need to account for potential scale differences. In a real-world case study, we illustrate the application of DGP-LVMs to such scRNA sequencing data. While motivated by this biological problem, our framework is generally applicable to all kinds of latent variable estimation problems involving derivative information irrespective of the field of study.
         datePublished:2025-06-08T00:00:00Z
         dateModified:2025-06-08T00:00:00Z
         pageStart:1
         pageEnd:27
         sameAs:https://doi.org/10.1007/s11222-025-10644-4
         keywords:
            Gaussian processes
            Single-cell RNA
            Bayesian inference
            Derivative GPs
            Latent variables
            Artificial Intelligence
            Statistics and Computing/Statistics Programs
            Statistical Theory and Methods
            Probability and Statistics in Computer Science
         image:
            https://media.springernature.com/lw1200/springer-static/image/art%3A10.1007%2Fs11222-025-10644-4/MediaObjects/11222_2025_10644_Fig1_HTML.png
            https://media.springernature.com/lw1200/springer-static/image/art%3A10.1007%2Fs11222-025-10644-4/MediaObjects/11222_2025_10644_Fig2_HTML.png
            https://media.springernature.com/lw1200/springer-static/image/art%3A10.1007%2Fs11222-025-10644-4/MediaObjects/11222_2025_10644_Fig3_HTML.png
            https://media.springernature.com/lw1200/springer-static/image/art%3A10.1007%2Fs11222-025-10644-4/MediaObjects/11222_2025_10644_Fig4_HTML.png
            https://media.springernature.com/lw1200/springer-static/image/art%3A10.1007%2Fs11222-025-10644-4/MediaObjects/11222_2025_10644_Fig5_HTML.png
            https://media.springernature.com/lw1200/springer-static/image/art%3A10.1007%2Fs11222-025-10644-4/MediaObjects/11222_2025_10644_Fig6_HTML.png
            https://media.springernature.com/lw1200/springer-static/image/art%3A10.1007%2Fs11222-025-10644-4/MediaObjects/11222_2025_10644_Fig7_HTML.png
            https://media.springernature.com/lw1200/springer-static/image/art%3A10.1007%2Fs11222-025-10644-4/MediaObjects/11222_2025_10644_Fig8_HTML.png
            https://media.springernature.com/lw1200/springer-static/image/art%3A10.1007%2Fs11222-025-10644-4/MediaObjects/11222_2025_10644_Fig9_HTML.png
            https://media.springernature.com/lw1200/springer-static/image/art%3A10.1007%2Fs11222-025-10644-4/MediaObjects/11222_2025_10644_Fig10_HTML.png
            https://media.springernature.com/lw1200/springer-static/image/art%3A10.1007%2Fs11222-025-10644-4/MediaObjects/11222_2025_10644_Fig11_HTML.png
            https://media.springernature.com/lw1200/springer-static/image/art%3A10.1007%2Fs11222-025-10644-4/MediaObjects/11222_2025_10644_Fig12_HTML.png
            https://media.springernature.com/lw1200/springer-static/image/art%3A10.1007%2Fs11222-025-10644-4/MediaObjects/11222_2025_10644_Fig13_HTML.png
         isPartOf:
            name:Statistics and Computing
            issn:
               1573-1375
               0960-3174
            volumeNumber:35
            type:
               Periodical
               PublicationVolume
         publisher:
            name:Springer US
            logo:
               url:https://www.springernature.com/app-sn/public/images/logo-springernature.png
               type:ImageObject
            type:Organization
         author:
               name:Soham Mukherjee
               affiliation:
                     name:Technical University of Dortmund
                     address:
                        name:Department of Statistics, Technical University of Dortmund, Dortmund, Germany
                        type:PostalAddress
                     type:Organization
                     name:University of Tübingen
                     address:
                        name:Department of Computer Science, University of Tübingen, Tübingen, Germany
                        type:PostalAddress
                     type:Organization
                     name:University Hospital Tübingen, Faculty of Medicine, University of Tübingen
                     address:
                        name:University Hospital Tübingen, Faculty of Medicine, University of Tübingen, Tübingen, Germany
                        type:PostalAddress
                     type:Organization
               email:[email protected]
               type:Person
               name:Manfred Claassen
               affiliation:
                     name:University of Tübingen
                     address:
                        name:Department of Computer Science, University of Tübingen, Tübingen, Germany
                        type:PostalAddress
                     type:Organization
                     name:University Hospital Tübingen, Faculty of Medicine, University of Tübingen
                     address:
                        name:University Hospital Tübingen, Faculty of Medicine, University of Tübingen, Tübingen, Germany
                        type:PostalAddress
                     type:Organization
               type:Person
               name:Paul-Christian Bürkner
               affiliation:
                     name:Technical University of Dortmund
                     address:
                        name:Department of Statistics, Technical University of Dortmund, Dortmund, Germany
                        type:PostalAddress
                     type:Organization
               type:Person
         isAccessibleForFree:
         hasPart:
            isAccessibleForFree:
            cssSelector:.main-content
            type:WebPageElement
         type:ScholarlyArticle
      context:https://schema.org
ScholarlyArticle:
      headline:DGP-LVM: Derivative Gaussian process latent variable models
      description:We develop a framework for derivative Gaussian process latent variable models (DGP-LVMs) that can handle multi-dimensional output data using modified derivative covariance functions. The modifications account for complexities in the underlying data generating process such as scaled derivatives, varying information across multiple output dimensions as well as interactions between outputs. Further, our framework provides uncertainty estimates for each latent variable samples using Bayesian inference. Through extensive simulations, we demonstrate that latent variable estimation accuracy can be drastically increased by including derivative information due to our proposed covariance function modifications. The developments are motivated by a concrete biological research problem involving the estimation of the unobserved cellular ordering from single-cell RNA (scRNA) sequencing data for gene expression and its corresponding derivative information known as RNA velocity. Since the RNA velocity is only an estimate of the exact derivative information, the derivative covariance functions need to account for potential scale differences. In a real-world case study, we illustrate the application of DGP-LVMs to such scRNA sequencing data. While motivated by this biological problem, our framework is generally applicable to all kinds of latent variable estimation problems involving derivative information irrespective of the field of study.
      datePublished:2025-06-08T00:00:00Z
      dateModified:2025-06-08T00:00:00Z
      pageStart:1
      pageEnd:27
      sameAs:https://doi.org/10.1007/s11222-025-10644-4
      keywords:
         Gaussian processes
         Single-cell RNA
         Bayesian inference
         Derivative GPs
         Latent variables
         Artificial Intelligence
         Statistics and Computing/Statistics Programs
         Statistical Theory and Methods
         Probability and Statistics in Computer Science
      image:
         https://media.springernature.com/lw1200/springer-static/image/art%3A10.1007%2Fs11222-025-10644-4/MediaObjects/11222_2025_10644_Fig1_HTML.png
         https://media.springernature.com/lw1200/springer-static/image/art%3A10.1007%2Fs11222-025-10644-4/MediaObjects/11222_2025_10644_Fig2_HTML.png
         https://media.springernature.com/lw1200/springer-static/image/art%3A10.1007%2Fs11222-025-10644-4/MediaObjects/11222_2025_10644_Fig3_HTML.png
         https://media.springernature.com/lw1200/springer-static/image/art%3A10.1007%2Fs11222-025-10644-4/MediaObjects/11222_2025_10644_Fig4_HTML.png
         https://media.springernature.com/lw1200/springer-static/image/art%3A10.1007%2Fs11222-025-10644-4/MediaObjects/11222_2025_10644_Fig5_HTML.png
         https://media.springernature.com/lw1200/springer-static/image/art%3A10.1007%2Fs11222-025-10644-4/MediaObjects/11222_2025_10644_Fig6_HTML.png
         https://media.springernature.com/lw1200/springer-static/image/art%3A10.1007%2Fs11222-025-10644-4/MediaObjects/11222_2025_10644_Fig7_HTML.png
         https://media.springernature.com/lw1200/springer-static/image/art%3A10.1007%2Fs11222-025-10644-4/MediaObjects/11222_2025_10644_Fig8_HTML.png
         https://media.springernature.com/lw1200/springer-static/image/art%3A10.1007%2Fs11222-025-10644-4/MediaObjects/11222_2025_10644_Fig9_HTML.png
         https://media.springernature.com/lw1200/springer-static/image/art%3A10.1007%2Fs11222-025-10644-4/MediaObjects/11222_2025_10644_Fig10_HTML.png
         https://media.springernature.com/lw1200/springer-static/image/art%3A10.1007%2Fs11222-025-10644-4/MediaObjects/11222_2025_10644_Fig11_HTML.png
         https://media.springernature.com/lw1200/springer-static/image/art%3A10.1007%2Fs11222-025-10644-4/MediaObjects/11222_2025_10644_Fig12_HTML.png
         https://media.springernature.com/lw1200/springer-static/image/art%3A10.1007%2Fs11222-025-10644-4/MediaObjects/11222_2025_10644_Fig13_HTML.png
      isPartOf:
         name:Statistics and Computing
         issn:
            1573-1375
            0960-3174
         volumeNumber:35
         type:
            Periodical
            PublicationVolume
      publisher:
         name:Springer US
         logo:
            url:https://www.springernature.com/app-sn/public/images/logo-springernature.png
            type:ImageObject
         type:Organization
      author:
            name:Soham Mukherjee
            affiliation:
                  name:Technical University of Dortmund
                  address:
                     name:Department of Statistics, Technical University of Dortmund, Dortmund, Germany
                     type:PostalAddress
                  type:Organization
                  name:University of Tübingen
                  address:
                     name:Department of Computer Science, University of Tübingen, Tübingen, Germany
                     type:PostalAddress
                  type:Organization
                  name:University Hospital Tübingen, Faculty of Medicine, University of Tübingen
                  address:
                     name:University Hospital Tübingen, Faculty of Medicine, University of Tübingen, Tübingen, Germany
                     type:PostalAddress
                  type:Organization
            email:[email protected]
            type:Person
            name:Manfred Claassen
            affiliation:
                  name:University of Tübingen
                  address:
                     name:Department of Computer Science, University of Tübingen, Tübingen, Germany
                     type:PostalAddress
                  type:Organization
                  name:University Hospital Tübingen, Faculty of Medicine, University of Tübingen
                  address:
                     name:University Hospital Tübingen, Faculty of Medicine, University of Tübingen, Tübingen, Germany
                     type:PostalAddress
                  type:Organization
            type:Person
            name:Paul-Christian Bürkner
            affiliation:
                  name:Technical University of Dortmund
                  address:
                     name:Department of Statistics, Technical University of Dortmund, Dortmund, Germany
                     type:PostalAddress
                  type:Organization
            type:Person
      isAccessibleForFree:
      hasPart:
         isAccessibleForFree:
         cssSelector:.main-content
         type:WebPageElement
["Periodical","PublicationVolume"]:
      name:Statistics and Computing
      issn:
         1573-1375
         0960-3174
      volumeNumber:35
Organization:
      name:Springer US
      logo:
         url:https://www.springernature.com/app-sn/public/images/logo-springernature.png
         type:ImageObject
      name:Technical University of Dortmund
      address:
         name:Department of Statistics, Technical University of Dortmund, Dortmund, Germany
         type:PostalAddress
      name:University of Tübingen
      address:
         name:Department of Computer Science, University of Tübingen, Tübingen, Germany
         type:PostalAddress
      name:University Hospital Tübingen, Faculty of Medicine, University of Tübingen
      address:
         name:University Hospital Tübingen, Faculty of Medicine, University of Tübingen, Tübingen, Germany
         type:PostalAddress
      name:University of Tübingen
      address:
         name:Department of Computer Science, University of Tübingen, Tübingen, Germany
         type:PostalAddress
      name:University Hospital Tübingen, Faculty of Medicine, University of Tübingen
      address:
         name:University Hospital Tübingen, Faculty of Medicine, University of Tübingen, Tübingen, Germany
         type:PostalAddress
      name:Technical University of Dortmund
      address:
         name:Department of Statistics, Technical University of Dortmund, Dortmund, Germany
         type:PostalAddress
ImageObject:
      url:https://www.springernature.com/app-sn/public/images/logo-springernature.png
Person:
      name:Soham Mukherjee
      affiliation:
            name:Technical University of Dortmund
            address:
               name:Department of Statistics, Technical University of Dortmund, Dortmund, Germany
               type:PostalAddress
            type:Organization
            name:University of Tübingen
            address:
               name:Department of Computer Science, University of Tübingen, Tübingen, Germany
               type:PostalAddress
            type:Organization
            name:University Hospital Tübingen, Faculty of Medicine, University of Tübingen
            address:
               name:University Hospital Tübingen, Faculty of Medicine, University of Tübingen, Tübingen, Germany
               type:PostalAddress
            type:Organization
      email:[email protected]
      name:Manfred Claassen
      affiliation:
            name:University of Tübingen
            address:
               name:Department of Computer Science, University of Tübingen, Tübingen, Germany
               type:PostalAddress
            type:Organization
            name:University Hospital Tübingen, Faculty of Medicine, University of Tübingen
            address:
               name:University Hospital Tübingen, Faculty of Medicine, University of Tübingen, Tübingen, Germany
               type:PostalAddress
            type:Organization
      name:Paul-Christian Bürkner
      affiliation:
            name:Technical University of Dortmund
            address:
               name:Department of Statistics, Technical University of Dortmund, Dortmund, Germany
               type:PostalAddress
            type:Organization
PostalAddress:
      name:Department of Statistics, Technical University of Dortmund, Dortmund, Germany
      name:Department of Computer Science, University of Tübingen, Tübingen, Germany
      name:University Hospital Tübingen, Faculty of Medicine, University of Tübingen, Tübingen, Germany
      name:Department of Computer Science, University of Tübingen, Tübingen, Germany
      name:University Hospital Tübingen, Faculty of Medicine, University of Tübingen, Tübingen, Germany
      name:Department of Statistics, Technical University of Dortmund, Dortmund, Germany
WebPageElement:
      isAccessibleForFree:
      cssSelector:.main-content

External Links {🔗}(65)

Analytics and Tracking {📊}

  • Google Tag Manager

Libraries {📚}

  • Clipboard.js
  • Prism.js

CDN Services {📦}

  • Crossref

5.03s.