Here's how LINK.SPRINGER.COM makes money* and how much!

*Please read our disclaimer before using our estimates.
Loading...

LINK . SPRINGER . COM {}

  1. Analyzed Page
  2. Matching Content Categories
  3. CMS
  4. Monthly Traffic Estimate
  5. How Does Link.springer.com Make Money
  6. Keywords
  7. Topics
  8. Questions
  9. Schema
  10. External Links
  11. Analytics And Tracking
  12. Libraries
  13. CDN Services

We are analyzing https://link.springer.com/article/10.1007/s00466-024-02471-7.

Title:
Modelling and simulation of anisotropic growth in brain tumours through poroelasticity: A study of ventricular compression and therapeutic protocols | Computational Mechanics
Description:
Malignant brain tumours represent a significant medical challenge due to their aggressive nature and unpredictable locations. The growth of a brain tumour can result in a mass effect, causing compression and displacement of the surrounding healthy brain tissue and possibly leading to severe neurological complications. In this paper, we propose a multiphase mechanical model for brain tumour growth that quantifies deformations and solid stresses caused by the expanding tumour mass and incorporates anisotropic growth influenced by brain fibres. We employ a sharp interface model to simulate localised, non-invasive solid brain tumours, which are those responsible for substantial mechanical impact on the surrounding healthy tissue. By using patient-specific imaging data, we create realistic three-dimensional brain geometries and accurately represent ventricular shapes, to evaluate how the growing mass may compress and deform the cerebral ventricles. Another relevant feature of our model is the ability to simulate therapeutic protocols, facilitating the evaluation of treatment efficacy and guiding the development of personalized therapies for individual patients. Overall, our model allows to make a step towards a deeper analysis of the complex interactions between brain tumours and their environment, with a particular focus on the impact of a growing cancer on healthy tissue, ventricular compression, and therapeutic treatment.
Website Age:
28 years and 1 months (reg. 1997-05-29).

Matching Content Categories {📚}

  • Science
  • Education
  • Dating & Relationships

Content Management System {📝}

What CMS is link.springer.com built with?

Custom-built

No common CMS systems were detected on Link.springer.com, and no known web development framework was identified.

Traffic Estimate {📈}

What is the average monthly size of link.springer.com audience?

🌠 Phenomenal Traffic: 5M - 10M visitors per month


Based on our best estimate, this website will receive around 7,626,182 visitors per month in the current month.

check SE Ranking
check Ahrefs
check Similarweb
check Ubersuggest
check Semrush

How Does Link.springer.com Make Money? {💸}

We don’t know how the website earns money.

Some websites aren't about earning revenue; they're built to connect communities or raise awareness. There are numerous motivations behind creating websites. This might be one of them. Link.springer.com could be secretly minting cash, but we can't detect the process.

Keywords {🔍}

mathbb, tumour, omega, brain, growth, article, google, scholar, model, text, tissue, tensor, phi, partial, endaligned, diffusion, beginaligned, time, fluid, grad, solid, left, cdot, mass, anisotropic, cell, int, boundary, data, cancer, ventricles, textrmt, mechanical, textrms, healthy, tumours, volume, anisotropy, initial, phase, ell, days, mathscinet, pressure, stress, mathematical, lambda, directions, values, deformation,

Topics {✒️}

=\frac{g_{\textrm{max}}-g_{\textrm{mid}}}{g_{\textrm{max}}+g_\textrm{mid}+g_{\textrm{min}}} =\frac{3 g_\textrm{min}}{g_{\textrm{max}}+g_{\textrm{mid}}+g_{\textrm{min}}} g_\textrm{min}=\min {\left\{ g_1 g_{\textrm{max}}=\max {\left\{ g_1 }}-\phi _{\textrm{sn}}}{1-\phi _{\textrm{sn}}}} }{2}\frac{\phi _{\textrm{sn}}^2-\phi _{\textrm{ }}-1}{1-\phi _{\textrm{sn}}}-\ln {\frac{j_{\textrm{ $$\begin{aligned}&-\int _{\omega _{\textrm{ $$\begin{aligned}&\int _{\omega _{\textrm{ =k_{0}\left[ \frac{\phi _{\textrm{sn}}\left 1-\frac{1-\phi _{\textrm{sn}}}{j_{\textrm{ }}{\dot{\phi }}_{\textrm{sn}}+j_{\textrm{ $$\begin{aligned}&-\int _{\omega ^{}}\left $$\begin{aligned}&\int _{\omega ^{}}\left lambda _{\textrm{mid}} = {\left\{ \begin{array}{ll}k_{ phi _{\textrm{sn}}=j_{\textrm{ phi _{\textrm{sn}} =j_{\textrm{ }_{\textrm{nfw}}}-\textrm{fa}_{\mathbb { $$\begin{aligned}&\dot{\overline{j_{\textrm{ $$\begin{aligned} {\tilde{\lambda }}_i ^{}=\int _{\omega _{\textrm{ ^{}&=-\int _{\omega _{\textrm{ g_{\textrm{mid}} phi _{\textrm{max}} _{\partial \omega _{\textrm{ lambda _1-\lambda _2 lambda _1-\lambda _3 $$\begin{aligned} \phi _{\textrm{ lambda _2-\lambda _3 dfrac{{\tilde{\lambda }}_i^ $$\begin{aligned} {\text {tr}}\left }}}_{\textrm{sn}}^\omega \left a_{\text {mid}} }}={\hat{\rho }}_{\mathrm{\ell }} $$\begin{aligned} \frac{{\dot{ }{{\tilde{\lambda }}_1 {\tilde{ +{\tilde{\lambda }}_2 {\tilde{ +{\tilde{\lambda }}_3{\tilde{ +{\tilde{\lambda }}_3 {\tilde{ a_\textrm{mid} a_{\textrm{mid}} a_{\text {min}} end{aligned}\nonumber \\ \end{aligned}$$ }}_1}{g_1} + \frac{{\dot{ 1-\phi _{\textrm{sn}} phi _{\textrm{sn}} 1-\phi _{\textrm{sn}} }}-\phi _{\textrm{sn}}} phi _{\textrm{sn}}

Questions {❓}

  • Hatzikirou H, Basanta D, Simon M, Schaller K, Deutsch A (2012) “Go or Grow’’: The key to the emergence of invasion in tumour progression?
  • He Y, Kaina B (2019) Are there thresholds in glioblastoma cell death responses triggered by temozolomide?
  • Löber-Handwerker R, Döring K, Bock C, Rohde V, Malinova V (2022) Defining the impact of adjuvant treatment on the prognosis of patients with inoperable glioblastoma undergoing biopsy-only: Does the survival benefit outweigh the treatment effort?
  • Onwudiwe K, Najera J, Siri S, Datta M (2022) Do tumor mechanical stresses promote cancer immune escape?

Schema {🗺️}

WebPage:
      mainEntity:
         headline:Modelling and simulation of anisotropic growth in brain tumours through poroelasticity: A study of ventricular compression and therapeutic protocols
         description:Malignant brain tumours represent a significant medical challenge due to their aggressive nature and unpredictable locations. The growth of a brain tumour can result in a mass effect, causing compression and displacement of the surrounding healthy brain tissue and possibly leading to severe neurological complications. In this paper, we propose a multiphase mechanical model for brain tumour growth that quantifies deformations and solid stresses caused by the expanding tumour mass and incorporates anisotropic growth influenced by brain fibres. We employ a sharp interface model to simulate localised, non-invasive solid brain tumours, which are those responsible for substantial mechanical impact on the surrounding healthy tissue. By using patient-specific imaging data, we create realistic three-dimensional brain geometries and accurately represent ventricular shapes, to evaluate how the growing mass may compress and deform the cerebral ventricles. Another relevant feature of our model is the ability to simulate therapeutic protocols, facilitating the evaluation of treatment efficacy and guiding the development of personalized therapies for individual patients. Overall, our model allows to make a step towards a deeper analysis of the complex interactions between brain tumours and their environment, with a particular focus on the impact of a growing cancer on healthy tissue, ventricular compression, and therapeutic treatment.
         datePublished:2024-04-25T00:00:00Z
         dateModified:2024-04-25T00:00:00Z
         pageStart:1137
         pageEnd:1169
         license:http://creativecommons.org/licenses/by/4.0/
         sameAs:https://doi.org/10.1007/s00466-024-02471-7
         keywords:
            Brain tumours
            Poroelasticity
            Anisotropic growth
            Ventricular compression
            Therapeutic protocols
            Finite element method
            Theoretical and Applied Mechanics
            Computational Science and Engineering
            Classical and Continuum Physics
         image:
            https://media.springernature.com/lw1200/springer-static/image/art%3A10.1007%2Fs00466-024-02471-7/MediaObjects/466_2024_2471_Fig1_HTML.png
            https://media.springernature.com/lw1200/springer-static/image/art%3A10.1007%2Fs00466-024-02471-7/MediaObjects/466_2024_2471_Fig2_HTML.png
            https://media.springernature.com/lw1200/springer-static/image/art%3A10.1007%2Fs00466-024-02471-7/MediaObjects/466_2024_2471_Fig3_HTML.png
            https://media.springernature.com/lw1200/springer-static/image/art%3A10.1007%2Fs00466-024-02471-7/MediaObjects/466_2024_2471_Fig4_HTML.png
            https://media.springernature.com/lw1200/springer-static/image/art%3A10.1007%2Fs00466-024-02471-7/MediaObjects/466_2024_2471_Fig5_HTML.png
            https://media.springernature.com/lw1200/springer-static/image/art%3A10.1007%2Fs00466-024-02471-7/MediaObjects/466_2024_2471_Fig6_HTML.png
            https://media.springernature.com/lw1200/springer-static/image/art%3A10.1007%2Fs00466-024-02471-7/MediaObjects/466_2024_2471_Fig7_HTML.png
            https://media.springernature.com/lw1200/springer-static/image/art%3A10.1007%2Fs00466-024-02471-7/MediaObjects/466_2024_2471_Fig8_HTML.png
            https://media.springernature.com/lw1200/springer-static/image/art%3A10.1007%2Fs00466-024-02471-7/MediaObjects/466_2024_2471_Fig9_HTML.png
            https://media.springernature.com/lw1200/springer-static/image/art%3A10.1007%2Fs00466-024-02471-7/MediaObjects/466_2024_2471_Fig10_HTML.png
            https://media.springernature.com/lw1200/springer-static/image/art%3A10.1007%2Fs00466-024-02471-7/MediaObjects/466_2024_2471_Fig11_HTML.png
         isPartOf:
            name:Computational Mechanics
            issn:
               1432-0924
               0178-7675
            volumeNumber:74
            type:
               Periodical
               PublicationVolume
         publisher:
            name:Springer Berlin Heidelberg
            logo:
               url:https://www.springernature.com/app-sn/public/images/logo-springernature.png
               type:ImageObject
            type:Organization
         author:
               name:Francesca Ballatore
               affiliation:
                     name:Politecnico di Torino
                     address:
                        name:Department of Mathematical Sciences “G.L. Lagrange”, Politecnico di Torino, Turin, Italy
                        type:PostalAddress
                     type:Organization
               email:[email protected]
               type:Person
               name:Giulio Lucci
               affiliation:
                     name:Sapienza University of Rome
                     address:
                        name:Department of Structural and Geotechnical Engineering, Sapienza University of Rome, Rome, Italy
                        type:PostalAddress
                     type:Organization
               type:Person
               name:Chiara Giverso
               affiliation:
                     name:Politecnico di Torino
                     address:
                        name:Department of Mathematical Sciences “G.L. Lagrange”, Politecnico di Torino, Turin, Italy
                        type:PostalAddress
                     type:Organization
               type:Person
         isAccessibleForFree:1
         type:ScholarlyArticle
      context:https://schema.org
ScholarlyArticle:
      headline:Modelling and simulation of anisotropic growth in brain tumours through poroelasticity: A study of ventricular compression and therapeutic protocols
      description:Malignant brain tumours represent a significant medical challenge due to their aggressive nature and unpredictable locations. The growth of a brain tumour can result in a mass effect, causing compression and displacement of the surrounding healthy brain tissue and possibly leading to severe neurological complications. In this paper, we propose a multiphase mechanical model for brain tumour growth that quantifies deformations and solid stresses caused by the expanding tumour mass and incorporates anisotropic growth influenced by brain fibres. We employ a sharp interface model to simulate localised, non-invasive solid brain tumours, which are those responsible for substantial mechanical impact on the surrounding healthy tissue. By using patient-specific imaging data, we create realistic three-dimensional brain geometries and accurately represent ventricular shapes, to evaluate how the growing mass may compress and deform the cerebral ventricles. Another relevant feature of our model is the ability to simulate therapeutic protocols, facilitating the evaluation of treatment efficacy and guiding the development of personalized therapies for individual patients. Overall, our model allows to make a step towards a deeper analysis of the complex interactions between brain tumours and their environment, with a particular focus on the impact of a growing cancer on healthy tissue, ventricular compression, and therapeutic treatment.
      datePublished:2024-04-25T00:00:00Z
      dateModified:2024-04-25T00:00:00Z
      pageStart:1137
      pageEnd:1169
      license:http://creativecommons.org/licenses/by/4.0/
      sameAs:https://doi.org/10.1007/s00466-024-02471-7
      keywords:
         Brain tumours
         Poroelasticity
         Anisotropic growth
         Ventricular compression
         Therapeutic protocols
         Finite element method
         Theoretical and Applied Mechanics
         Computational Science and Engineering
         Classical and Continuum Physics
      image:
         https://media.springernature.com/lw1200/springer-static/image/art%3A10.1007%2Fs00466-024-02471-7/MediaObjects/466_2024_2471_Fig1_HTML.png
         https://media.springernature.com/lw1200/springer-static/image/art%3A10.1007%2Fs00466-024-02471-7/MediaObjects/466_2024_2471_Fig2_HTML.png
         https://media.springernature.com/lw1200/springer-static/image/art%3A10.1007%2Fs00466-024-02471-7/MediaObjects/466_2024_2471_Fig3_HTML.png
         https://media.springernature.com/lw1200/springer-static/image/art%3A10.1007%2Fs00466-024-02471-7/MediaObjects/466_2024_2471_Fig4_HTML.png
         https://media.springernature.com/lw1200/springer-static/image/art%3A10.1007%2Fs00466-024-02471-7/MediaObjects/466_2024_2471_Fig5_HTML.png
         https://media.springernature.com/lw1200/springer-static/image/art%3A10.1007%2Fs00466-024-02471-7/MediaObjects/466_2024_2471_Fig6_HTML.png
         https://media.springernature.com/lw1200/springer-static/image/art%3A10.1007%2Fs00466-024-02471-7/MediaObjects/466_2024_2471_Fig7_HTML.png
         https://media.springernature.com/lw1200/springer-static/image/art%3A10.1007%2Fs00466-024-02471-7/MediaObjects/466_2024_2471_Fig8_HTML.png
         https://media.springernature.com/lw1200/springer-static/image/art%3A10.1007%2Fs00466-024-02471-7/MediaObjects/466_2024_2471_Fig9_HTML.png
         https://media.springernature.com/lw1200/springer-static/image/art%3A10.1007%2Fs00466-024-02471-7/MediaObjects/466_2024_2471_Fig10_HTML.png
         https://media.springernature.com/lw1200/springer-static/image/art%3A10.1007%2Fs00466-024-02471-7/MediaObjects/466_2024_2471_Fig11_HTML.png
      isPartOf:
         name:Computational Mechanics
         issn:
            1432-0924
            0178-7675
         volumeNumber:74
         type:
            Periodical
            PublicationVolume
      publisher:
         name:Springer Berlin Heidelberg
         logo:
            url:https://www.springernature.com/app-sn/public/images/logo-springernature.png
            type:ImageObject
         type:Organization
      author:
            name:Francesca Ballatore
            affiliation:
                  name:Politecnico di Torino
                  address:
                     name:Department of Mathematical Sciences “G.L. Lagrange”, Politecnico di Torino, Turin, Italy
                     type:PostalAddress
                  type:Organization
            email:[email protected]
            type:Person
            name:Giulio Lucci
            affiliation:
                  name:Sapienza University of Rome
                  address:
                     name:Department of Structural and Geotechnical Engineering, Sapienza University of Rome, Rome, Italy
                     type:PostalAddress
                  type:Organization
            type:Person
            name:Chiara Giverso
            affiliation:
                  name:Politecnico di Torino
                  address:
                     name:Department of Mathematical Sciences “G.L. Lagrange”, Politecnico di Torino, Turin, Italy
                     type:PostalAddress
                  type:Organization
            type:Person
      isAccessibleForFree:1
["Periodical","PublicationVolume"]:
      name:Computational Mechanics
      issn:
         1432-0924
         0178-7675
      volumeNumber:74
Organization:
      name:Springer Berlin Heidelberg
      logo:
         url:https://www.springernature.com/app-sn/public/images/logo-springernature.png
         type:ImageObject
      name:Politecnico di Torino
      address:
         name:Department of Mathematical Sciences “G.L. Lagrange”, Politecnico di Torino, Turin, Italy
         type:PostalAddress
      name:Sapienza University of Rome
      address:
         name:Department of Structural and Geotechnical Engineering, Sapienza University of Rome, Rome, Italy
         type:PostalAddress
      name:Politecnico di Torino
      address:
         name:Department of Mathematical Sciences “G.L. Lagrange”, Politecnico di Torino, Turin, Italy
         type:PostalAddress
ImageObject:
      url:https://www.springernature.com/app-sn/public/images/logo-springernature.png
Person:
      name:Francesca Ballatore
      affiliation:
            name:Politecnico di Torino
            address:
               name:Department of Mathematical Sciences “G.L. Lagrange”, Politecnico di Torino, Turin, Italy
               type:PostalAddress
            type:Organization
      email:[email protected]
      name:Giulio Lucci
      affiliation:
            name:Sapienza University of Rome
            address:
               name:Department of Structural and Geotechnical Engineering, Sapienza University of Rome, Rome, Italy
               type:PostalAddress
            type:Organization
      name:Chiara Giverso
      affiliation:
            name:Politecnico di Torino
            address:
               name:Department of Mathematical Sciences “G.L. Lagrange”, Politecnico di Torino, Turin, Italy
               type:PostalAddress
            type:Organization
PostalAddress:
      name:Department of Mathematical Sciences “G.L. Lagrange”, Politecnico di Torino, Turin, Italy
      name:Department of Structural and Geotechnical Engineering, Sapienza University of Rome, Rome, Italy
      name:Department of Mathematical Sciences “G.L. Lagrange”, Politecnico di Torino, Turin, Italy

External Links {🔗}(363)

Analytics and Tracking {📊}

  • Google Tag Manager

Libraries {📚}

  • Clipboard.js
  • Particles.js
  • Prism.js

CDN Services {📦}

  • Crossref

6.62s.